Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspabs2 Structured version   Visualization version   GIF version

Theorem lspabs2 19333
 Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.)
Hypotheses
Ref Expression
lspabs2.v 𝑉 = (Base‘𝑊)
lspabs2.p + = (+g𝑊)
lspabs2.o 0 = (0g𝑊)
lspabs2.n 𝑁 = (LSpan‘𝑊)
lspabs2.w (𝜑𝑊 ∈ LVec)
lspabs2.x (𝜑𝑋𝑉)
lspabs2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lspabs2.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
Assertion
Ref Expression
lspabs2 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))

Proof of Theorem lspabs2
StepHypRef Expression
1 lspabs2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
2 lveclmod 19319 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
4 lspabs2.x . . . . . 6 (𝜑𝑋𝑉)
5 lspabs2.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 lspabs2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
75, 6lspsnsubg 19193 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
83, 4, 7syl2anc 573 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
9 lspabs2.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3735 . . . . . 6 (𝜑𝑌𝑉)
115, 6lspsnsubg 19193 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
123, 10, 11syl2anc 573 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
13 eqid 2771 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1413lsmub2 18279 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
158, 12, 14syl2anc 573 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
16 lspabs2.e . . . . . 6 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
1716oveq2d 6812 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
1813lsmidm 18284 . . . . . 6 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
198, 18syl 17 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
20 lspabs2.p . . . . . . 7 + = (+g𝑊)
215, 20, 6, 3, 4, 10lspprabs 19308 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
225, 20lmodvacl 19087 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
233, 4, 10, 22syl3anc 1476 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
245, 6, 13, 3, 4, 23lsmpr 19302 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
255, 6, 13, 3, 4, 10lsmpr 19302 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2621, 24, 253eqtr3d 2813 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2717, 19, 263eqtr3rd 2814 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋}))
2815, 27sseqtrd 3790 . . 3 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}))
29 lspabs2.o . . . 4 0 = (0g𝑊)
305, 29, 6, 1, 9, 4lspsncmp 19329 . . 3 (𝜑 → ((𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3128, 30mpbid 222 . 2 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3231eqcomd 2777 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145   ∖ cdif 3720   ⊆ wss 3723  {csn 4317  {cpr 4319  ‘cfv 6030  (class class class)co 6796  Basecbs 16064  +gcplusg 16149  0gc0g 16308  SubGrpcsubg 17796  LSSumclsm 18256  LModclmod 19073  LSpanclspn 19184  LVecclvec 19315 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316 This theorem is referenced by:  lspindp3  19350
 Copyright terms: Public domain W3C validator