MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmvalx Structured version   Visualization version   GIF version

Theorem lsmvalx 18260
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 18269. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem lsmvalx
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfval.v . . . . 5 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . . 5 + = (+g𝐺)
3 lsmfval.s . . . . 5 = (LSSum‘𝐺)
41, 2, 3lsmfval 18259 . . . 4 (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
54oveqd 6809 . . 3 (𝐺𝑉 → (𝑇 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈))
6 fvex 6342 . . . . . 6 (Base‘𝐺) ∈ V
71, 6eqeltri 2845 . . . . 5 𝐵 ∈ V
87elpw2 4956 . . . 4 (𝑇 ∈ 𝒫 𝐵𝑇𝐵)
97elpw2 4956 . . . 4 (𝑈 ∈ 𝒫 𝐵𝑈𝐵)
10 mpt2exga 7395 . . . . . 6 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
11 rnexg 7244 . . . . . 6 ((𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
1210, 11syl 17 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
13 mpt2eq12 6861 . . . . . . 7 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1413rneqd 5491 . . . . . 6 ((𝑡 = 𝑇𝑢 = 𝑈) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
15 eqid 2770 . . . . . 6 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
1614, 15ovmpt2ga 6936 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1712, 16mpd3an3 1572 . . . 4 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
188, 9, 17syl2anbr 578 . . 3 ((𝑇𝐵𝑈𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
195, 18sylan9eq 2824 . 2 ((𝐺𝑉 ∧ (𝑇𝐵𝑈𝐵)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
20193impb 1106 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  Vcvv 3349  wss 3721  𝒫 cpw 4295  ran crn 5250  cfv 6031  (class class class)co 6792  cmpt2 6794  Basecbs 16063  +gcplusg 16148  LSSumclsm 18255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-lsm 18257
This theorem is referenced by:  lsmelvalx  18261  lsmssv  18264  lsmval  18269  subglsm  18292
  Copyright terms: Public domain W3C validator