![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmvalx | Structured version Visualization version GIF version |
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 18269. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfval.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | lsmfval.a | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | lsmfval.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmfval 18259 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
5 | 4 | oveqd 6809 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑇 ⊕ 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈)) |
6 | fvex 6342 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
7 | 1, 6 | eqeltri 2845 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | 7 | elpw2 4956 | . . . 4 ⊢ (𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵) |
9 | 7 | elpw2 4956 | . . . 4 ⊢ (𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵) |
10 | mpt2exga 7395 | . . . . . 6 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
11 | rnexg 7244 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) |
13 | mpt2eq12 6861 | . . . . . . 7 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | |
14 | 13 | rneqd 5491 | . . . . . 6 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
15 | eqid 2770 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) | |
16 | 14, 15 | ovmpt2ga 6936 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
17 | 12, 16 | mpd3an3 1572 | . . . 4 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
18 | 8, 9, 17 | syl2anbr 578 | . . 3 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
19 | 5, 18 | sylan9eq 2824 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
20 | 19 | 3impb 1106 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ⊆ wss 3721 𝒫 cpw 4295 ran crn 5250 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 Basecbs 16063 +gcplusg 16148 LSSumclsm 18255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-lsm 18257 |
This theorem is referenced by: lsmelvalx 18261 lsmssv 18264 lsmval 18269 subglsm 18292 |
Copyright terms: Public domain | W3C validator |