![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmub2x | Structured version Visualization version GIF version |
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmub2x | ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 17560 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | 1 | ad2antrr 761 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝐺 ∈ Mnd) |
3 | simpr 480 | . . . . . 6 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
4 | 3 | sselda 3749 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐵) |
5 | lsmless2.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | eqid 2769 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | eqid 2769 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 5, 6, 7 | mndlid 17525 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
9 | 2, 4, 8 | syl2anc 693 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
10 | 5 | submss 17564 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ 𝐵) |
11 | 10 | ad2antrr 761 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑇 ⊆ 𝐵) |
12 | simplr 806 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑈 ⊆ 𝐵) | |
13 | 7 | subm0cl 17566 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑇) |
14 | 13 | ad2antrr 761 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → (0g‘𝐺) ∈ 𝑇) |
15 | simpr 480 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
16 | lsmless2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
17 | 5, 6, 16 | lsmelvalix 18269 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ((0g‘𝐺) ∈ 𝑇 ∧ 𝑥 ∈ 𝑈)) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
18 | 2, 11, 12, 14, 15, 17 | syl32anc 1482 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
19 | 9, 18 | eqeltrrd 2849 | . . 3 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
20 | 19 | ex 448 | . 2 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑈 → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
21 | 20 | ssrdv 3755 | 1 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ⊆ wss 3720 ‘cfv 6030 (class class class)co 6791 Basecbs 16070 +gcplusg 16155 0gc0g 16314 Mndcmnd 17508 SubMndcsubmnd 17548 LSSumclsm 18262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-2 11279 df-ndx 16073 df-slot 16074 df-base 16076 df-sets 16077 df-ress 16078 df-plusg 16168 df-0g 16316 df-mgm 17456 df-sgrp 17498 df-mnd 17509 df-submnd 17550 df-lsm 18264 |
This theorem is referenced by: lsmub2 18285 |
Copyright terms: Public domain | W3C validator |