![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmub1x | Structured version Visualization version GIF version |
Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmub1x | ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 17553 | . . . . . 6 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | 1 | ad2antlr 698 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝐺 ∈ Mnd) |
3 | simpll 742 | . . . . . 6 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑇 ⊆ 𝐵) | |
4 | simpr 471 | . . . . . 6 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑇) | |
5 | 3, 4 | sseldd 3751 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐵) |
6 | lsmless2.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
7 | eqid 2770 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | eqid 2770 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | 6, 7, 8 | mndrid 17519 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
10 | 2, 5, 9 | syl2anc 565 | . . . 4 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
11 | 6 | submss 17557 | . . . . . 6 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ 𝐵) |
12 | 11 | ad2antlr 698 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑈 ⊆ 𝐵) |
13 | 8 | subm0cl 17559 | . . . . . 6 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑈) |
14 | 13 | ad2antlr 698 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → (0g‘𝐺) ∈ 𝑈) |
15 | lsmless2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
16 | 6, 7, 15 | lsmelvalix 18262 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ (0g‘𝐺) ∈ 𝑈)) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ (𝑇 ⊕ 𝑈)) |
17 | 2, 3, 12, 4, 14, 16 | syl32anc 1483 | . . . 4 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ (𝑇 ⊕ 𝑈)) |
18 | 10, 17 | eqeltrrd 2850 | . . 3 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
19 | 18 | ex 397 | . 2 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
20 | 19 | ssrdv 3756 | 1 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 0gc0g 16307 Mndcmnd 17501 SubMndcsubmnd 17541 LSSumclsm 18255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-lsm 18257 |
This theorem is referenced by: lsmsubm 18274 lsmub1 18277 |
Copyright terms: Public domain | W3C validator |