Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Visualization version   GIF version

Theorem lsmspsn 19207
 Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v 𝑉 = (Base‘𝑊)
lsmspsn.a + = (+g𝑊)
lsmspsn.f 𝐹 = (Scalar‘𝑊)
lsmspsn.k 𝐾 = (Base‘𝐹)
lsmspsn.t · = ( ·𝑠𝑊)
lsmspsn.p = (LSSum‘𝑊)
lsmspsn.n 𝑁 = (LSpan‘𝑊)
lsmspsn.w (𝜑𝑊 ∈ LMod)
lsmspsn.x (𝜑𝑋𝑉)
lsmspsn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsmspsn (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Distinct variable groups:   𝑗,𝑘, +   𝑗,𝐹,𝑘   𝑗,𝐾,𝑘   𝑗,𝑁,𝑘   · ,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑉,𝑘   𝑗,𝑊,𝑘   𝑗,𝑋,𝑘   𝑗,𝑌,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   (𝑗,𝑘)

Proof of Theorem lsmspsn
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmspsn.x . . . 4 (𝜑𝑋𝑉)
3 lsmspsn.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsmspsn.n . . . . 5 𝑁 = (LSpan‘𝑊)
53, 4lspsnsubg 19103 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
61, 2, 5syl2anc 696 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
7 lsmspsn.y . . . 4 (𝜑𝑌𝑉)
83, 4lspsnsubg 19103 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
91, 7, 8syl2anc 696 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
10 lsmspsn.a . . . 4 + = (+g𝑊)
11 lsmspsn.p . . . 4 = (LSSum‘𝑊)
1210, 11lsmelval 18185 . . 3 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
136, 9, 12syl2anc 696 . 2 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
14 lsmspsn.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
15 lsmspsn.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
16 lsmspsn.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
1714, 15, 3, 16, 4lspsnel 19126 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
181, 2, 17syl2anc 696 . . . . . . . 8 (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
1914, 15, 3, 16, 4lspsnel 19126 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
201, 7, 19syl2anc 696 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2118, 20anbi12d 749 . . . . . . 7 (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌})) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌))))
2221biimpa 502 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2322biantrurd 530 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
24 r19.41v 3191 . . . . . . 7 (∃𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2524rexbii 3143 . . . . . 6 (∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
26 r19.41v 3191 . . . . . 6 (∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
27 reeanv 3209 . . . . . . 7 (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2827anbi1i 733 . . . . . 6 ((∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2925, 26, 283bitrri 287 . . . . 5 (((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3023, 29syl6bb 276 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
31302rexbidva 3158 . . 3 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
32 rexrot4 3205 . . 3 (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3331, 32syl6bb 276 . 2 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
341adantr 472 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑊 ∈ LMod)
35 simprl 811 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑗𝐾)
362adantr 472 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑋𝑉)
373, 16, 14, 15, 4, 34, 35, 36lspsneli 19124 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑋) ∈ (𝑁‘{𝑋}))
38 simprr 813 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑘𝐾)
397adantr 472 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑌𝑉)
403, 16, 14, 15, 4, 34, 38, 39lspsneli 19124 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑘 · 𝑌) ∈ (𝑁‘{𝑌}))
41 oveq1 6772 . . . . . 6 (𝑣 = (𝑗 · 𝑋) → (𝑣 + 𝑤) = ((𝑗 · 𝑋) + 𝑤))
4241eqeq2d 2734 . . . . 5 (𝑣 = (𝑗 · 𝑋) → (𝑈 = (𝑣 + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + 𝑤)))
43 oveq2 6773 . . . . . 6 (𝑤 = (𝑘 · 𝑌) → ((𝑗 · 𝑋) + 𝑤) = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))
4443eqeq2d 2734 . . . . 5 (𝑤 = (𝑘 · 𝑌) → (𝑈 = ((𝑗 · 𝑋) + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4542, 44ceqsrex2v 3442 . . . 4 (((𝑗 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝑘 · 𝑌) ∈ (𝑁‘{𝑌})) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4637, 40, 45syl2anc 696 . . 3 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
47462rexbidva 3158 . 2 (𝜑 → (∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4813, 33, 473bitrd 294 1 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103  ∃wrex 3015  {csn 4285  ‘cfv 6001  (class class class)co 6765  Basecbs 15980  +gcplusg 16064  Scalarcsca 16067   ·𝑠 cvsca 16068  SubGrpcsubg 17710  LSSumclsm 18170  LModclmod 18986  LSpanclspn 19094 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-0g 16225  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-grp 17547  df-minusg 17548  df-sbg 17549  df-subg 17713  df-lsm 18172  df-mgp 18611  df-ur 18623  df-ring 18670  df-lmod 18988  df-lss 19056  df-lsp 19095 This theorem is referenced by:  lsppr  19216  baerlem3lem2  37418  baerlem5alem2  37419  baerlem5blem2  37420
 Copyright terms: Public domain W3C validator