MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod Structured version   Visualization version   GIF version

Theorem lsmmod 18134
Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))

Proof of Theorem lsmmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1084 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 simpl2 1085 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 inss1 3866 . . . . 5 (𝑇𝑈) ⊆ 𝑇
43a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑇)
5 lsmmod.p . . . . 5 = (LSSum‘𝐺)
65lsmless2 18121 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
71, 2, 4, 6syl3anc 1366 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
8 simpr 476 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆𝑈)
9 inss2 3867 . . . . 5 (𝑇𝑈) ⊆ 𝑈
109a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑈)
11 subgrcl 17646 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2651 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
1312subgacs 17676 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
14 acsmre 16360 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
151, 11, 13, 144syl 19 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16 simpl3 1086 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
17 mreincl 16306 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
1815, 2, 16, 17syl3anc 1366 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
195lsmlub 18124 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
201, 18, 16, 19syl3anc 1366 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
218, 10, 20mpbi2and 976 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ 𝑈)
227, 21ssind 3870 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ ((𝑆 𝑇) ∩ 𝑈))
23 elin 3829 . . . 4 (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) ↔ (𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈))
24 eqid 2651 . . . . . . . 8 (+g𝐺) = (+g𝐺)
2524, 5lsmelval 18110 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
261, 2, 25syl2anc 694 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
271adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
2818adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
29 simprll 819 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑆)
30 simprlr 820 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑇)
3127, 11syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝐺 ∈ Grp)
3216adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
3312subgss 17642 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ⊆ (Base‘𝐺))
358adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆𝑈)
3635, 29sseldd 3637 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑈)
3734, 36sseldd 3637 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦 ∈ (Base‘𝐺))
38 eqid 2651 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
39 eqid 2651 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
4012, 24, 38, 39grplinv 17515 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4131, 37, 40syl2anc 694 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4241oveq1d 6705 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
4339subginvcl 17650 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑈) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4432, 36, 43syl2anc 694 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4534, 44sseldd 3637 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
46 simpll2 1121 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
4712subgss 17642 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ⊆ (Base‘𝐺))
4948, 30sseldd 3637 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (Base‘𝐺))
5012, 24grpass 17478 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5131, 45, 37, 49, 50syl13anc 1368 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5212, 24, 38grplid 17499 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5331, 49, 52syl2anc 694 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5442, 51, 533eqtr3d 2693 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) = 𝑧)
55 simprr 811 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ 𝑈)
5624subgcl 17651 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑦) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5732, 44, 55, 56syl3anc 1366 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5854, 57eqeltrrd 2731 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑈)
5930, 58elind 3831 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (𝑇𝑈))
6024, 5lsmelvali 18111 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺)) ∧ (𝑦𝑆𝑧 ∈ (𝑇𝑈))) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6127, 28, 29, 59, 60syl22anc 1367 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6261expr 642 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
63 eleq1 2718 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑈))
64 eleq1 2718 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∈ (𝑆 (𝑇𝑈)) ↔ (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
6563, 64imbi12d 333 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈))) ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))))
6662, 65syl5ibrcom 237 . . . . . . 7 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6766rexlimdvva 3067 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6826, 67sylbid 230 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6968impd 446 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7023, 69syl5bi 232 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7170ssrdv 3642 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆 𝑇) ∩ 𝑈) ⊆ (𝑆 (𝑇𝑈)))
7222, 71eqssd 3653 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  cin 3606  wss 3607  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Moorecmre 16289  ACScacs 16292  Grpcgrp 17469  invgcminusg 17470  SubGrpcsubg 17635  LSSumclsm 18095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-subg 17638  df-lsm 18097
This theorem is referenced by:  lsmmod2  18135  lcvexchlem2  34640  dihmeetlem9N  36921
  Copyright terms: Public domain W3C validator