MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless1 Structured version   Visualization version   GIF version

Theorem lsmless1 18281
Description: Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))

Proof of Theorem lsmless1
StepHypRef Expression
1 subgrcl 17807 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
213ad2ant1 1127 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝐺 ∈ Grp)
3 eqid 2771 . . . 4 (Base‘𝐺) = (Base‘𝐺)
43subgss 17803 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
543ad2ant1 1127 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑇 ⊆ (Base‘𝐺))
63subgss 17803 . . 3 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1128 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑈 ⊆ (Base‘𝐺))
8 simp3 1132 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑆𝑇)
9 lsmub1.p . . 3 = (LSSum‘𝐺)
103, 9lsmless1x 18266 . 2 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))
112, 5, 7, 8, 10syl31anc 1479 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  wss 3723  cfv 6031  (class class class)co 6793  Basecbs 16064  Grpcgrp 17630  SubGrpcsubg 17796  LSSumclsm 18256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-subg 17799  df-lsm 18258
This theorem is referenced by:  lsmelval2  19298  lcvexchlem4  34846
  Copyright terms: Public domain W3C validator