![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmelvalx | Structured version Visualization version GIF version |
Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 18284. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmelvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmvalx 18274 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧))) |
5 | 4 | eleq2d 2825 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ 𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)))) |
6 | eqid 2760 | . . 3 ⊢ (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) = (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) | |
7 | ovex 6842 | . . 3 ⊢ (𝑦 + 𝑧) ∈ V | |
8 | 6, 7 | elrnmpt2 6939 | . 2 ⊢ (𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧)) |
9 | 5, 8 | syl6bb 276 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ⊆ wss 3715 ran crn 5267 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 Basecbs 16079 +gcplusg 16163 LSSumclsm 18269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-lsm 18271 |
This theorem is referenced by: lsmelvalix 18276 lsmless1x 18279 lsmless2x 18280 lsmelval 18284 lsmsubm 18288 lsmass 18303 lsmcomx 18479 lsmcss 20258 |
Copyright terms: Public domain | W3C validator |