MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj3r Structured version   Visualization version   GIF version

Theorem lsmdisj3r 18299
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisjr.i (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
lsmdisj2r.i (𝜑 → (𝑇𝑈) = { 0 })
lsmdisj3r.z 𝑍 = (Cntz‘𝐺)
lsmdisj3r.s (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
lsmdisj3r (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })

Proof of Theorem lsmdisj3r
StepHypRef Expression
1 lsmcntz.p . 2 = (LSSum‘𝐺)
2 lsmcntz.s . 2 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3 lsmcntz.u . 2 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 lsmcntz.t . 2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
5 lsmdisj.o . 2 0 = (0g𝐺)
6 lsmdisj3r.s . . . . 5 (𝜑𝑇 ⊆ (𝑍𝑈))
7 lsmdisj3r.z . . . . . 6 𝑍 = (Cntz‘𝐺)
81, 7lsmcom2 18270 . . . . 5 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
94, 3, 6, 8syl3anc 1477 . . . 4 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
109ineq2d 3957 . . 3 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = (𝑆 ∩ (𝑈 𝑇)))
11 lsmdisjr.i . . 3 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
1210, 11eqtr3d 2796 . 2 (𝜑 → (𝑆 ∩ (𝑈 𝑇)) = { 0 })
13 incom 3948 . . 3 (𝑈𝑇) = (𝑇𝑈)
14 lsmdisj2r.i . . 3 (𝜑 → (𝑇𝑈) = { 0 })
1513, 14syl5eq 2806 . 2 (𝜑 → (𝑈𝑇) = { 0 })
161, 2, 3, 4, 5, 12, 15lsmdisj2r 18298 1 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  cin 3714  wss 3715  {csn 4321  cfv 6049  (class class class)co 6813  0gc0g 16302  SubGrpcsubg 17789  Cntzccntz 17948  LSSumclsm 18249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-subg 17792  df-cntz 17950  df-oppg 17976  df-lsm 18251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator