Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmcv2 Structured version   Visualization version   GIF version

Theorem lsmcv2 34831
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 29486 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsmcv2.v 𝑉 = (Base‘𝑊)
lsmcv2.s 𝑆 = (LSubSp‘𝑊)
lsmcv2.n 𝑁 = (LSpan‘𝑊)
lsmcv2.p = (LSSum‘𝑊)
lsmcv2.c 𝐶 = ( ⋖L𝑊)
lsmcv2.w (𝜑𝑊 ∈ LVec)
lsmcv2.u (𝜑𝑈𝑆)
lsmcv2.x (𝜑𝑋𝑉)
lsmcv2.l (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
Assertion
Ref Expression
lsmcv2 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))

Proof of Theorem lsmcv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmcv2.l . . 3 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
2 lsmcv2.p . . . 4 = (LSSum‘𝑊)
3 lsmcv2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 19318 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lsmcv2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
76lsssssubg 19170 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
9 lsmcv2.u . . . . 5 (𝜑𝑈𝑆)
108, 9sseldd 3751 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
11 lsmcv2.x . . . . . 6 (𝜑𝑋𝑉)
12 lsmcv2.v . . . . . . 7 𝑉 = (Base‘𝑊)
13 lsmcv2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
1412, 6, 13lspsncl 19189 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
155, 11, 14syl2anc 565 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
168, 15sseldd 3751 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
172, 10, 16lssnle 18293 . . 3 (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈𝑈 ⊊ (𝑈 (𝑁‘{𝑋}))))
181, 17mpbid 222 . 2 (𝜑𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
19 3simpa 1141 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → (𝜑𝑥𝑆))
20 simp3l 1242 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑈𝑥)
21 simp3r 1243 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))
223adantr 466 . . . . . 6 ((𝜑𝑥𝑆) → 𝑊 ∈ LVec)
239adantr 466 . . . . . 6 ((𝜑𝑥𝑆) → 𝑈𝑆)
24 simpr 471 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
2511adantr 466 . . . . . 6 ((𝜑𝑥𝑆) → 𝑋𝑉)
2612, 6, 13, 2, 22, 23, 24, 25lsmcv 19354 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
2719, 20, 21, 26syl3anc 1475 . . . 4 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
28273exp 1111 . . 3 (𝜑 → (𝑥𝑆 → ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))))
2928ralrimiv 3113 . 2 (𝜑 → ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))
30 lsmcv2.c . . 3 𝐶 = ( ⋖L𝑊)
316, 2lsmcl 19295 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
325, 9, 15, 31syl3anc 1475 . . 3 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
336, 30, 3, 9, 32lcvbr2 34824 . 2 (𝜑 → (𝑈𝐶(𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))))
3418, 29, 33mpbir2and 684 1 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  wss 3721  wpss 3722  {csn 4314   class class class wbr 4784  cfv 6031  (class class class)co 6792  Basecbs 16063  SubGrpcsubg 17795  LSSumclsm 18255  LModclmod 19072  LSubSpclss 19141  LSpanclspn 19183  LVecclvec 19314  L clcv 34820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-lsm 18257  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315  df-lcv 34821
This theorem is referenced by:  lcv1  34843
  Copyright terms: Public domain W3C validator