![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmcntz | Structured version Visualization version GIF version |
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
lsmcntz | ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | lsmcntz.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | lsmcntz.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | subgrcl 17821 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
5 | eqid 2761 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | 5 | subgss 17817 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
7 | lsmcntz.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
8 | 5, 7 | cntzsubg 17990 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) |
9 | 4, 6, 8 | syl2anc 696 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) |
10 | 3, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) |
11 | lsmcntz.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | 11 | lsmlub 18299 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)) ↔ (𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈))) |
13 | 1, 2, 10, 12 | syl3anc 1477 | . 2 ⊢ (𝜑 → ((𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)) ↔ (𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈))) |
14 | 13 | bicomd 213 | 1 ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ⊆ wss 3716 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 Grpcgrp 17644 SubGrpcsubg 17810 Cntzccntz 17969 LSSumclsm 18270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-submnd 17558 df-grp 17647 df-minusg 17648 df-subg 17813 df-cntz 17971 df-lsm 18272 |
This theorem is referenced by: lsmcntzr 18314 |
Copyright terms: Public domain | W3C validator |