MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcl Structured version   Visualization version   GIF version

Theorem lsmcl 19285
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcl.s 𝑆 = (LSubSp‘𝑊)
lsmcl.p = (LSSum‘𝑊)
Assertion
Ref Expression
lsmcl ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)

Proof of Theorem lsmcl
Dummy variables 𝑎 𝑑 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodabl 19112 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
213ad2ant1 1128 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ Abel)
3 lsmcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
43lsssubg 19159 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
543adant3 1127 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
63lsssubg 19159 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
763adant2 1126 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
8 lsmcl.p . . . 4 = (LSSum‘𝑊)
98lsmsubg2 18462 . . 3 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
102, 5, 7, 9syl3anc 1477 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
11 eqid 2760 . . . . . . . 8 (+g𝑊) = (+g𝑊)
1211, 8lsmelval 18264 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
135, 7, 12syl2anc 696 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
1413adantr 472 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
15 simpll1 1255 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑊 ∈ LMod)
16 simplr 809 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
17 simpll2 1257 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇𝑆)
18 simprl 811 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑𝑇)
19 eqid 2760 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2019, 3lssel 19140 . . . . . . . . . 10 ((𝑇𝑆𝑑𝑇) → 𝑑 ∈ (Base‘𝑊))
2117, 18, 20syl2anc 696 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑 ∈ (Base‘𝑊))
22 simpll3 1259 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈𝑆)
23 simprr 813 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒𝑈)
2419, 3lssel 19140 . . . . . . . . . 10 ((𝑈𝑆𝑒𝑈) → 𝑒 ∈ (Base‘𝑊))
2522, 23, 24syl2anc 696 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒 ∈ (Base‘𝑊))
26 eqid 2760 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
27 eqid 2760 . . . . . . . . . 10 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2760 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2919, 11, 26, 27, 28lmodvsdi 19088 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑 ∈ (Base‘𝑊) ∧ 𝑒 ∈ (Base‘𝑊))) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3015, 16, 21, 25, 29syl13anc 1479 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3115, 17, 4syl2anc 696 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
3215, 22, 6syl2anc 696 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
3326, 27, 28, 3lssvscl 19157 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑇𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑𝑇)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3415, 17, 16, 18, 33syl22anc 1478 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3526, 27, 28, 3lssvscl 19157 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3615, 22, 16, 23, 35syl22anc 1478 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3711, 8lsmelvali 18265 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) ∧ ((𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇 ∧ (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3831, 32, 34, 36, 37syl22anc 1478 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3930, 38eqeltrd 2839 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈))
40 oveq2 6821 . . . . . . . 8 (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) = (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)))
4140eleq1d 2824 . . . . . . 7 (𝑢 = (𝑑(+g𝑊)𝑒) → ((𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈) ↔ (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈)))
4239, 41syl5ibrcom 237 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4342rexlimdvva 3176 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4414, 43sylbid 230 . . . 4 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4544impr 650 . . 3 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (𝑇 𝑈))) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4645ralrimivva 3109 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4726, 28, 19, 27, 3islss4 19164 . . 3 (𝑊 ∈ LMod → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
48473ad2ant1 1128 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
4910, 46, 48mpbir2and 995 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  Scalarcsca 16146   ·𝑠 cvsca 16147  SubGrpcsubg 17789  LSSumclsm 18249  Abelcabl 18394  LModclmod 19065  LSubSpclss 19134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-cntz 17950  df-lsm 18251  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-lmod 19067  df-lss 19135
This theorem is referenced by:  lsmelval2  19287  lsmsp  19288  lspprabs  19297  pj1lmhm  19302  lspabs3  19323  pjth  23410  lshpnelb  34774  lsmsat  34798  lsmcv2  34819  lcvat  34820  lcvexchlem4  34827  lcvexchlem5  34828  lcv1  34831  lsatexch  34833  lsatcv0eq  34837  lsatcvatlem  34839  lsatcvat2  34841  lsatcvat3  34842  lkrlsp  34892  dia2dimlem7  36861  dihjustlem  37007  dihord1  37009  dihlsscpre  37025  dihjatcclem2  37210  dihjat1lem  37219  dochexmidlem5  37255  dochexmidlem6  37256  dochexmidlem8  37258  lcfrlem23  37356  mapdlsmcl  37454  mapdlsm  37455  mapdpglem1  37463  mapdpglem2a  37465  mapdindp0  37510  mapdheq4lem  37522  mapdh6lem1N  37524  mapdh6lem2N  37525  hdmap1l6lem1  37599  hdmap1l6lem2  37600  hdmaprnlem3eN  37652  kercvrlsm  38155
  Copyright terms: Public domain W3C validator