Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpsmreu Structured version   Visualization version   GIF version

Theorem lshpsmreu 34714
Description: Lemma for lshpkrex 34723. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3202 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lshpsmreu.v 𝑉 = (Base‘𝑊)
lshpsmreu.a + = (+g𝑊)
lshpsmreu.n 𝑁 = (LSpan‘𝑊)
lshpsmreu.p = (LSSum‘𝑊)
lshpsmreu.h 𝐻 = (LSHyp‘𝑊)
lshpsmreu.w (𝜑𝑊 ∈ LVec)
lshpsmreu.u (𝜑𝑈𝐻)
lshpsmreu.z (𝜑𝑍𝑉)
lshpsmreu.x (𝜑𝑋𝑉)
lshpsmreu.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpsmreu.d 𝐷 = (Scalar‘𝑊)
lshpsmreu.k 𝐾 = (Base‘𝐷)
lshpsmreu.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
lshpsmreu (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Distinct variable groups:   𝑦,𝑘, +   𝑘,𝐾   · ,𝑘,𝑦   𝑈,𝑘,𝑦   𝑘,𝑋,𝑦   𝑘,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐷(𝑦,𝑘)   (𝑦,𝑘)   𝐻(𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem lshpsmreu
Dummy variables 𝑎 𝑏 𝑐 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpsmreu.x . . . . . . 7 (𝜑𝑋𝑉)
2 lshpsmreu.e . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
31, 2eleqtrrd 2733 . . . . . 6 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑍})))
4 lshpsmreu.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
5 lveclmod 19154 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
7 eqid 2651 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 19006 . . . . . . . . 9 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . . . . . 8 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 lshpsmreu.h . . . . . . . . 9 𝐻 = (LSHyp‘𝑊)
11 lshpsmreu.u . . . . . . . . 9 (𝜑𝑈𝐻)
127, 10, 6, 11lshplss 34586 . . . . . . . 8 (𝜑𝑈 ∈ (LSubSp‘𝑊))
139, 12sseldd 3637 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
14 lshpsmreu.z . . . . . . . . 9 (𝜑𝑍𝑉)
15 lshpsmreu.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
16 lshpsmreu.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1715, 7, 16lspsncl 19025 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
186, 14, 17syl2anc 694 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
199, 18sseldd 3637 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
20 lshpsmreu.a . . . . . . . 8 + = (+g𝑊)
21 lshpsmreu.p . . . . . . . 8 = (LSSum‘𝑊)
2220, 21lsmelval 18110 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
2313, 19, 22syl2anc 694 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
243, 23mpbid 222 . . . . 5 (𝜑 → ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧))
25 df-rex 2947 . . . . . . 7 (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)))
26 lshpsmreu.d . . . . . . . . . . . . 13 𝐷 = (Scalar‘𝑊)
27 lshpsmreu.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐷)
28 lshpsmreu.t . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
2926, 27, 15, 28, 16lspsnel 19051 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
306, 14, 29syl2anc 694 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
3130anbi1d 741 . . . . . . . . . 10 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
32 r19.41v 3118 . . . . . . . . . 10 (∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
3331, 32syl6bbr 278 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
3433exbidv 1890 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
35 rexcom4 3256 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
36 ovex 6718 . . . . . . . . . . 11 (𝑏 · 𝑍) ∈ V
37 oveq2 6698 . . . . . . . . . . . 12 (𝑧 = (𝑏 · 𝑍) → (𝑐 + 𝑧) = (𝑐 + (𝑏 · 𝑍)))
3837eqeq2d 2661 . . . . . . . . . . 11 (𝑧 = (𝑏 · 𝑍) → (𝑋 = (𝑐 + 𝑧) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍))))
3936, 38ceqsexv 3273 . . . . . . . . . 10 (∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4039rexbii 3070 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4135, 40bitr3i 266 . . . . . . . 8 (∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4234, 41syl6bb 276 . . . . . . 7 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4325, 42syl5bb 272 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4443rexbidv 3081 . . . . 5 (𝜑 → (∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4524, 44mpbid 222 . . . 4 (𝜑 → ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
46 rexcom 3128 . . . 4 (∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4745, 46sylib 208 . . 3 (𝜑 → ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
48 oveq1 6697 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐 + (𝑏 · 𝑍)) = (𝑎 + (𝑏 · 𝑍)))
4948eqeq2d 2661 . . . . . . 7 (𝑐 = 𝑎 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑎 + (𝑏 · 𝑍))))
5049cbvrexv 3202 . . . . . 6 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)))
51 eqid 2651 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
52 eqid 2651 . . . . . . . . . 10 (Cntz‘𝑊) = (Cntz‘𝑊)
53 simp11l 1192 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝜑)
5453, 13syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ∈ (SubGrp‘𝑊))
5553, 19syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
5615, 51, 16, 21, 10, 4, 11, 14, 2lshpdisj 34592 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5753, 56syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5853, 4syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LVec)
5958, 5syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LMod)
60 lmodabl 18958 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6159, 60syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ Abel)
6252, 61, 54, 55ablcntzd 18306 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍})))
63 simp12 1112 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑎𝑈)
64 simp2 1082 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑐𝑈)
65 simp1rl 1146 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑏𝐾)
66653ad2ant1 1102 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏𝐾)
6753, 14syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍𝑉)
6815, 28, 26, 27, 16, 59, 66, 67lspsneli 19049 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) ∈ (𝑁‘{𝑍}))
69 simp1rr 1147 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑙𝐾)
70693ad2ant1 1102 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑙𝐾)
7115, 28, 26, 27, 16, 59, 70, 67lspsneli 19049 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑙 · 𝑍) ∈ (𝑁‘{𝑍}))
72 simp13 1113 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑎 + (𝑏 · 𝑍)))
73 simp3 1083 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑐 + (𝑙 · 𝑍)))
7472, 73eqtr3d 2687 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑎 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
7520, 51, 52, 54, 55, 57, 62, 63, 64, 68, 71, 74subgdisj2 18151 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) = (𝑙 · 𝑍))
7653, 11syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈𝐻)
7753, 2syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
7815, 16, 21, 10, 51, 59, 76, 67, 77lshpne0 34591 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍 ≠ (0g𝑊))
7915, 28, 26, 27, 51, 58, 66, 70, 67, 78lvecvscan2 19160 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → ((𝑏 · 𝑍) = (𝑙 · 𝑍) ↔ 𝑏 = 𝑙))
8075, 79mpbid 222 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)
8180rexlimdv3a 3062 . . . . . . 7 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙))
8281rexlimdv3a 3062 . . . . . 6 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8350, 82syl5bi 232 . . . . 5 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8483impd 446 . . . 4 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
8584ralrimivva 3000 . . 3 (𝜑 → ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
86 oveq1 6697 . . . . . . 7 (𝑏 = 𝑙 → (𝑏 · 𝑍) = (𝑙 · 𝑍))
8786oveq2d 6706 . . . . . 6 (𝑏 = 𝑙 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
8887eqeq2d 2661 . . . . 5 (𝑏 = 𝑙 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑙 · 𝑍))))
8988rexbidv 3081 . . . 4 (𝑏 = 𝑙 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))))
9089reu4 3433 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ (∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)))
9147, 85, 90sylanbrc 699 . 2 (𝜑 → ∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
92 oveq1 6697 . . . . . . 7 (𝑏 = 𝑘 → (𝑏 · 𝑍) = (𝑘 · 𝑍))
9392oveq2d 6706 . . . . . 6 (𝑏 = 𝑘 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑘 · 𝑍)))
9493eqeq2d 2661 . . . . 5 (𝑏 = 𝑘 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9594rexbidv 3081 . . . 4 (𝑏 = 𝑘 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9695cbvreuv 3203 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)))
97 oveq1 6697 . . . . . 6 (𝑐 = 𝑦 → (𝑐 + (𝑘 · 𝑍)) = (𝑦 + (𝑘 · 𝑍)))
9897eqeq2d 2661 . . . . 5 (𝑐 = 𝑦 → (𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
9998cbvrexv 3202 . . . 4 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10099reubii 3158 . . 3 (∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10196, 100bitri 264 . 2 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10291, 101sylib 208 1 (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  ∃!wreu 2943  cin 3606  wss 3607  {csn 4210  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147  SubGrpcsubg 17635  Cntzccntz 17794  LSSumclsm 18095  Abelcabl 18240  LModclmod 18911  LSubSpclss 18980  LSpanclspn 19019  LVecclvec 19150  LSHypclsh 34580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-cntz 17796  df-lsm 18097  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-drng 18797  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lvec 19151  df-lshyp 34582
This theorem is referenced by:  lshpkrlem1  34715  lshpkrlem2  34716  lshpkrlem3  34717  lshpkrcl  34721  dochfl1  37082
  Copyright terms: Public domain W3C validator