Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnelb Structured version   Visualization version   GIF version

Theorem lshpnelb 34691
 Description: The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lshpnelb.v 𝑉 = (Base‘𝑊)
lshpnelb.n 𝑁 = (LSpan‘𝑊)
lshpnelb.p = (LSSum‘𝑊)
lshpnelb.h 𝐻 = (LSHyp‘𝑊)
lshpnelb.w (𝜑𝑊 ∈ LVec)
lshpnelb.u (𝜑𝑈𝐻)
lshpnelb.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lshpnelb (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnelb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnelb.u . . . . . 6 (𝜑𝑈𝐻)
2 lshpnelb.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 lshpnelb.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
4 eqid 2724 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lshpnelb.p . . . . . . 7 = (LSSum‘𝑊)
6 lshpnelb.h . . . . . . 7 𝐻 = (LSHyp‘𝑊)
7 lshpnelb.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
8 lveclmod 19229 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
102, 3, 4, 5, 6, 9islshpsm 34687 . . . . . 6 (𝜑 → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
111, 10mpbid 222 . . . . 5 (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
1211simp3d 1136 . . . 4 (𝜑 → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
1312adantr 472 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
14 simp1l 1216 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝜑)
15 simp2 1129 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑣𝑉)
164lsssssubg 19081 . . . . . . . . . . . 12 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
179, 16syl 17 . . . . . . . . . . 11 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
184, 6, 9, 1lshplss 34688 . . . . . . . . . . 11 (𝜑𝑈 ∈ (LSubSp‘𝑊))
1917, 18sseldd 3710 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
20 lshpnelb.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
212, 4, 3lspsncl 19100 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
229, 20, 21syl2anc 696 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2317, 22sseldd 3710 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
245lsmub1 18192 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2519, 23, 24syl2anc 696 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2625adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
275lsmub2 18193 . . . . . . . . . . . 12 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
2819, 23, 27syl2anc 696 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
292, 3lspsnid 19116 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
309, 20, 29syl2anc 696 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
3128, 30sseldd 3710 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑋})))
32 nelne1 2992 . . . . . . . . . 10 ((𝑋 ∈ (𝑈 (𝑁‘{𝑋})) ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3331, 32sylan 489 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3433necomd 2951 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ≠ (𝑈 (𝑁‘{𝑋})))
35 df-pss 3696 . . . . . . . 8 (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊆ (𝑈 (𝑁‘{𝑋})) ∧ 𝑈 ≠ (𝑈 (𝑁‘{𝑋}))))
3626, 34, 35sylanbrc 701 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
37363ad2ant1 1125 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
384, 5lsmcl 19206 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
399, 18, 22, 38syl3anc 1439 . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
402, 4lssss 19060 . . . . . . . . . . 11 ((𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4139, 40syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4241adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
43 simpr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
4442, 43sseqtr4d 3748 . . . . . . . 8 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
4544adantlr 753 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
46453adant2 1123 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
477adantr 472 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
4818adantr 472 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑈 ∈ (LSubSp‘𝑊))
4939adantr 472 . . . . . . 7 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
50 simpr 479 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
512, 4, 3, 5, 47, 48, 49, 50lsmcv 19264 . . . . . 6 (((𝜑𝑣𝑉) ∧ 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣}))) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
5214, 15, 37, 46, 51syl211anc 1445 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
53 simp3 1130 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
5452, 53eqtrd 2758 . . . 4 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
5554rexlimdv3a 3135 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 → (𝑈 (𝑁‘{𝑋})) = 𝑉))
5613, 55mpd 15 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
579adantr 472 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LMod)
581adantr 472 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
5920adantr 472 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
60 simpr 479 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
612, 3, 5, 6, 57, 58, 59, 60lshpnel 34690 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ¬ 𝑋𝑈)
6256, 61impbida 913 1 (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ∃wrex 3015   ⊆ wss 3680   ⊊ wpss 3681  {csn 4285  ‘cfv 6001  (class class class)co 6765  Basecbs 15980  SubGrpcsubg 17710  LSSumclsm 18170  LModclmod 18986  LSubSpclss 19055  LSpanclspn 19094  LVecclvec 19225  LSHypclsh 34682 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-tpos 7472  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-3 11193  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-0g 16225  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-grp 17547  df-minusg 17548  df-sbg 17549  df-subg 17713  df-cntz 17871  df-lsm 18172  df-cmn 18316  df-abl 18317  df-mgp 18611  df-ur 18623  df-ring 18670  df-oppr 18744  df-dvdsr 18762  df-unit 18763  df-invr 18793  df-drng 18872  df-lmod 18988  df-lss 19056  df-lsp 19095  df-lvec 19226  df-lshyp 34684 This theorem is referenced by:  lshpnel2N  34692  l1cvpat  34761  dochexmidat  37167
 Copyright terms: Public domain W3C validator