![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpnel2N | Structured version Visualization version GIF version |
Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lshpnel2.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpnel2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshpnel2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpnel2.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpnel2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpnel2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpnel2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lshpnel2.t | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
lshpnel2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lshpnel2.e | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
lshpnel2N | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpnel2.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
2 | 1 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → ¬ 𝑋 ∈ 𝑈) |
3 | lshpnel2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lshpnel2.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lshpnel2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
6 | lshpnel2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
7 | lshpnel2.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
8 | 7 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑊 ∈ LVec) |
9 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑈 ∈ 𝐻) | |
10 | lshpnel2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | 10 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑋 ∈ 𝑉) |
12 | 3, 4, 5, 6, 8, 9, 11 | lshpnelb 34766 | . . 3 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → (¬ 𝑋 ∈ 𝑈 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
13 | 2, 12 | mpbid 222 | . 2 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) |
14 | lshpnel2.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
15 | 14 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ∈ 𝑆) |
16 | lshpnel2.t | . . . 4 ⊢ (𝜑 → 𝑈 ≠ 𝑉) | |
17 | 16 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ≠ 𝑉) |
18 | 10 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑋 ∈ 𝑉) |
19 | lveclmod 19300 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
20 | 7, 19 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LMod) |
21 | lshpnel2.s | . . . . . . . . . . 11 ⊢ 𝑆 = (LSubSp‘𝑊) | |
22 | 21, 4 | lspid 19176 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
23 | 20, 14, 22 | syl2anc 696 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘𝑈) = 𝑈) |
24 | 23 | uneq1d 3901 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁‘𝑈) ∪ (𝑁‘{𝑋})) = (𝑈 ∪ (𝑁‘{𝑋}))) |
25 | 24 | fveq2d 6348 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
26 | 3, 21 | lssss 19131 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
27 | 14, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
28 | 10 | snssd 4477 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
29 | 3, 4 | lspun 19181 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋})))) |
30 | 20, 27, 28, 29 | syl3anc 1473 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋})))) |
31 | 3, 21, 4 | lspsncl 19171 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
32 | 20, 10, 31 | syl2anc 696 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
33 | 21, 4, 5 | lsmsp 19280 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
34 | 20, 14, 32, 33 | syl3anc 1473 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
35 | 25, 30, 34 | 3eqtr4rd 2797 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ {𝑋}))) |
36 | 35 | eqeq1d 2754 | . . . . 5 ⊢ (𝜑 → ((𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)) |
37 | 36 | biimpa 502 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) |
38 | sneq 4323 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
39 | 38 | uneq2d 3902 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (𝑈 ∪ {𝑣}) = (𝑈 ∪ {𝑋})) |
40 | 39 | fveq2d 6348 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘(𝑈 ∪ {𝑋}))) |
41 | 40 | eqeq1d 2754 | . . . . 5 ⊢ (𝑣 = 𝑋 → ((𝑁‘(𝑈 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)) |
42 | 41 | rspcev 3441 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) → ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) |
43 | 18, 37, 42 | syl2anc 696 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) |
44 | 7 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LVec) |
45 | 3, 4, 21, 6 | islshp 34761 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
46 | 44, 45 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
47 | 15, 17, 43, 46 | mpbir3and 1425 | . 2 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ∈ 𝐻) |
48 | 13, 47 | impbida 913 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 ∃wrex 3043 ∪ cun 3705 ⊆ wss 3707 {csn 4313 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 LSSumclsm 18241 LModclmod 19057 LSubSpclss 19126 LSpanclspn 19165 LVecclvec 19296 LSHypclsh 34757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-3 11264 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-0g 16296 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-submnd 17529 df-grp 17618 df-minusg 17619 df-sbg 17620 df-subg 17784 df-cntz 17942 df-lsm 18243 df-cmn 18387 df-abl 18388 df-mgp 18682 df-ur 18694 df-ring 18741 df-oppr 18815 df-dvdsr 18833 df-unit 18834 df-invr 18864 df-drng 18943 df-lmod 19059 df-lss 19127 df-lsp 19166 df-lvec 19297 df-lshyp 34759 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |