Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnel2N Structured version   Visualization version   GIF version

Theorem lshpnel2N 34767
Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpnel2.v 𝑉 = (Base‘𝑊)
lshpnel2.s 𝑆 = (LSubSp‘𝑊)
lshpnel2.n 𝑁 = (LSpan‘𝑊)
lshpnel2.p = (LSSum‘𝑊)
lshpnel2.h 𝐻 = (LSHyp‘𝑊)
lshpnel2.w (𝜑𝑊 ∈ LVec)
lshpnel2.u (𝜑𝑈𝑆)
lshpnel2.t (𝜑𝑈𝑉)
lshpnel2.x (𝜑𝑋𝑉)
lshpnel2.e (𝜑 → ¬ 𝑋𝑈)
Assertion
Ref Expression
lshpnel2N (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnel2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnel2.e . . . 4 (𝜑 → ¬ 𝑋𝑈)
21adantr 472 . . 3 ((𝜑𝑈𝐻) → ¬ 𝑋𝑈)
3 lshpnel2.v . . . 4 𝑉 = (Base‘𝑊)
4 lshpnel2.n . . . 4 𝑁 = (LSpan‘𝑊)
5 lshpnel2.p . . . 4 = (LSSum‘𝑊)
6 lshpnel2.h . . . 4 𝐻 = (LSHyp‘𝑊)
7 lshpnel2.w . . . . 5 (𝜑𝑊 ∈ LVec)
87adantr 472 . . . 4 ((𝜑𝑈𝐻) → 𝑊 ∈ LVec)
9 simpr 479 . . . 4 ((𝜑𝑈𝐻) → 𝑈𝐻)
10 lshpnel2.x . . . . 5 (𝜑𝑋𝑉)
1110adantr 472 . . . 4 ((𝜑𝑈𝐻) → 𝑋𝑉)
123, 4, 5, 6, 8, 9, 11lshpnelb 34766 . . 3 ((𝜑𝑈𝐻) → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
132, 12mpbid 222 . 2 ((𝜑𝑈𝐻) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
14 lshpnel2.u . . . 4 (𝜑𝑈𝑆)
1514adantr 472 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑆)
16 lshpnel2.t . . . 4 (𝜑𝑈𝑉)
1716adantr 472 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑉)
1810adantr 472 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
19 lveclmod 19300 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
207, 19syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
21 lshpnel2.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
2221, 4lspid 19176 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
2320, 14, 22syl2anc 696 . . . . . . . . 9 (𝜑 → (𝑁𝑈) = 𝑈)
2423uneq1d 3901 . . . . . . . 8 (𝜑 → ((𝑁𝑈) ∪ (𝑁‘{𝑋})) = (𝑈 ∪ (𝑁‘{𝑋})))
2524fveq2d 6348 . . . . . . 7 (𝜑 → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
263, 21lssss 19131 . . . . . . . . 9 (𝑈𝑆𝑈𝑉)
2714, 26syl 17 . . . . . . . 8 (𝜑𝑈𝑉)
2810snssd 4477 . . . . . . . 8 (𝜑 → {𝑋} ⊆ 𝑉)
293, 4lspun 19181 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
3020, 27, 28, 29syl3anc 1473 . . . . . . 7 (𝜑 → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
313, 21, 4lspsncl 19171 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
3220, 10, 31syl2anc 696 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
3321, 4, 5lsmsp 19280 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3420, 14, 32, 33syl3anc 1473 . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3525, 30, 343eqtr4rd 2797 . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ {𝑋})))
3635eqeq1d 2754 . . . . 5 (𝜑 → ((𝑈 (𝑁‘{𝑋})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
3736biimpa 502 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)
38 sneq 4323 . . . . . . . 8 (𝑣 = 𝑋 → {𝑣} = {𝑋})
3938uneq2d 3902 . . . . . . 7 (𝑣 = 𝑋 → (𝑈 ∪ {𝑣}) = (𝑈 ∪ {𝑋}))
4039fveq2d 6348 . . . . . 6 (𝑣 = 𝑋 → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘(𝑈 ∪ {𝑋})))
4140eqeq1d 2754 . . . . 5 (𝑣 = 𝑋 → ((𝑁‘(𝑈 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
4241rspcev 3441 . . . 4 ((𝑋𝑉 ∧ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
4318, 37, 42syl2anc 696 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
447adantr 472 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LVec)
453, 4, 21, 6islshp 34761 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4644, 45syl 17 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4715, 17, 43, 46mpbir3and 1425 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
4813, 47impbida 913 1 (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wrex 3043  cun 3705  wss 3707  {csn 4313  cfv 6041  (class class class)co 6805  Basecbs 16051  LSSumclsm 18241  LModclmod 19057  LSubSpclss 19126  LSpanclspn 19165  LVecclvec 19296  LSHypclsh 34757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-subg 17784  df-cntz 17942  df-lsm 18243  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-oppr 18815  df-dvdsr 18833  df-unit 18834  df-invr 18864  df-drng 18943  df-lmod 19059  df-lss 19127  df-lsp 19166  df-lvec 19297  df-lshyp 34759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator