Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem5 Structured version   Visualization version   GIF version

Theorem lshpkrlem5 34916
Description: Lemma for lshpkrex 34920. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑧,𝑙, +   𝐺,𝑙,𝑧   𝐾,𝑙   𝑈,𝑙,𝑧   𝑋,𝑙,𝑧   𝑍,𝑙,𝑧,𝑘,𝑥,𝑦   · ,𝑙,𝑧   𝑢,𝑘,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐷(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   + (𝑣,𝑢,𝑠,𝑟)   (𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   · (𝑣,𝑢,𝑠,𝑟)   𝑈(𝑣,𝑢,𝑠,𝑟)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐾(𝑦,𝑧,𝑣,𝑢,𝑠,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑋(𝑣,𝑢,𝑠,𝑟)   0 (𝑥,𝑦,𝑧,𝑣,𝑢,𝑠,𝑟,𝑙)   𝑍(𝑣,𝑢,𝑠,𝑟)

Proof of Theorem lshpkrlem5
StepHypRef Expression
1 lshpkrlem.a . . 3 + = (+g𝑊)
2 eqid 2770 . . 3 (0g𝑊) = (0g𝑊)
3 eqid 2770 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
4 simp11 1244 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑)
5 lshpkrlem.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
64, 5syl 17 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ LVec)
7 lveclmod 19318 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ LMod)
9 eqid 2770 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
109lsssssubg 19170 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
118, 10syl 17 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
12 lshpkrlem.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
135, 7syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
14 lshpkrlem.u . . . . . 6 (𝜑𝑈𝐻)
159, 12, 13, 14lshplss 34783 . . . . 5 (𝜑𝑈 ∈ (LSubSp‘𝑊))
164, 15syl 17 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ∈ (LSubSp‘𝑊))
1711, 16sseldd 3751 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ∈ (SubGrp‘𝑊))
18 lshpkrlem.z . . . . . 6 (𝜑𝑍𝑉)
194, 18syl 17 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑍𝑉)
20 lshpkrlem.v . . . . . 6 𝑉 = (Base‘𝑊)
21 lshpkrlem.n . . . . . 6 𝑁 = (LSpan‘𝑊)
2220, 9, 21lspsncl 19189 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
238, 19, 22syl2anc 565 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
2411, 23sseldd 3751 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
25 lshpkrlem.p . . . . 5 = (LSSum‘𝑊)
26 lshpkrlem.e . . . . 5 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
2720, 2, 21, 25, 12, 5, 14, 18, 26lshpdisj 34789 . . . 4 (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
284, 27syl 17 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
29 lmodabl 19119 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
308, 29syl 17 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ Abel)
313, 30, 17, 24ablcntzd 18466 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍})))
32 simp23r 1378 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧𝑈)
33 simp12 1245 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙𝐾)
34 simp22 1248 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑈)
35 lshpkrlem.d . . . . . 6 𝐷 = (Scalar‘𝑊)
36 lshpkrlem.t . . . . . 6 · = ( ·𝑠𝑊)
37 lshpkrlem.k . . . . . 6 𝐾 = (Base‘𝐷)
3835, 36, 37, 9lssvscl 19167 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ (𝑙𝐾𝑟𝑈)) → (𝑙 · 𝑟) ∈ 𝑈)
398, 16, 33, 34, 38syl22anc 1476 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙 · 𝑟) ∈ 𝑈)
40 simp23l 1377 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑈)
411, 9lssvacl 19166 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ ((𝑙 · 𝑟) ∈ 𝑈𝑠𝑈)) → ((𝑙 · 𝑟) + 𝑠) ∈ 𝑈)
428, 16, 39, 40, 41syl22anc 1476 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑟) + 𝑠) ∈ 𝑈)
43 simp13 1246 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢𝑉)
4420, 35, 36, 37lmodvscl 19089 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑢𝑉) → (𝑙 · 𝑢) ∈ 𝑉)
458, 33, 43, 44syl3anc 1475 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙 · 𝑢) ∈ 𝑉)
46 simp21 1247 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣𝑉)
4720, 1lmodvacl 19086 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉𝑣𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
488, 45, 46, 47syl3anc 1475 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
495adantr 466 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑊 ∈ LVec)
5014adantr 466 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑈𝐻)
5118adantr 466 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑍𝑉)
52 simpr 471 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
5326adantr 466 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
54 lshpkrlem.o . . . . . 6 0 = (0g𝐷)
55 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
5620, 1, 21, 25, 12, 49, 50, 51, 52, 53, 35, 37, 36, 54, 55lshpkrlem2 34913 . . . . 5 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) ∈ 𝐾)
574, 48, 56syl2anc 565 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) ∈ 𝐾)
5820, 36, 35, 37, 21, 8, 57, 19lspsneli 19213 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) ∈ (𝑁‘{𝑍}))
595adantr 466 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑊 ∈ LVec)
6014adantr 466 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑈𝐻)
6118adantr 466 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑍𝑉)
62 simpr 471 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑢𝑉)
6326adantr 466 . . . . . . . 8 ((𝜑𝑢𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
6420, 1, 21, 25, 12, 59, 60, 61, 62, 63, 35, 37, 36, 54, 55lshpkrlem2 34913 . . . . . . 7 ((𝜑𝑢𝑉) → (𝐺𝑢) ∈ 𝐾)
654, 43, 64syl2anc 565 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺𝑢) ∈ 𝐾)
66 eqid 2770 . . . . . . 7 (.r𝐷) = (.r𝐷)
6735, 37, 66lmodmcl 19084 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
688, 33, 65, 67syl3anc 1475 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
695adantr 466 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
7014adantr 466 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑈𝐻)
7118adantr 466 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑍𝑉)
72 simpr 471 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
7326adantr 466 . . . . . . 7 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
7420, 1, 21, 25, 12, 69, 70, 71, 72, 73, 35, 37, 36, 54, 55lshpkrlem2 34913 . . . . . 6 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
754, 46, 74syl2anc 565 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺𝑣) ∈ 𝐾)
76 eqid 2770 . . . . . 6 (+g𝐷) = (+g𝐷)
7735, 37, 76lmodacl 19083 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾 ∧ (𝐺𝑣) ∈ 𝐾) → ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) ∈ 𝐾)
788, 68, 75, 77syl3anc 1475 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) ∈ 𝐾)
7920, 36, 35, 37, 21, 8, 78, 19lspsneli 19213 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) ∈ (𝑁‘{𝑍}))
80 simp33 1252 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
81 simp1 1129 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝜑𝑙𝐾𝑢𝑉))
8220, 9lssel 19147 . . . . . 6 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑟𝑈) → 𝑟𝑉)
8316, 34, 82syl2anc 565 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑉)
8420, 9lssel 19147 . . . . . 6 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑈) → 𝑠𝑉)
8516, 40, 84syl2anc 565 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑉)
86 simp31 1250 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
87 simp32 1251 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
88 lshpkrlem.x . . . . . 6 (𝜑𝑋𝑉)
8920, 1, 21, 25, 12, 5, 14, 18, 88, 26, 35, 37, 36, 54, 55lshpkrlem4 34915 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
9081, 46, 83, 85, 86, 87, 89syl132anc 1493 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
9180, 90eqtr3d 2806 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
921, 2, 3, 17, 24, 28, 31, 32, 42, 58, 79, 91subgdisj2 18311 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍))
9320, 21, 25, 12, 2, 13, 14, 18, 26lshpne0 34788 . . . 4 (𝜑𝑍 ≠ (0g𝑊))
944, 93syl 17 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑍 ≠ (0g𝑊))
9520, 36, 35, 37, 2, 6, 57, 78, 19, 94lvecvscan2 19324 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) ↔ (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
9692, 95mpbid 222 1 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wrex 3061  cin 3720  wss 3721  {csn 4314  cmpt 4861  cfv 6031  crio 6752  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  .rcmulr 16149  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307  SubGrpcsubg 17795  Cntzccntz 17954  LSSumclsm 18255  Abelcabl 18400  LModclmod 19072  LSubSpclss 19141  LSpanclspn 19183  LVecclvec 19314  LSHypclsh 34777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-lsm 18257  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315  df-lshyp 34779
This theorem is referenced by:  lshpkrlem6  34917
  Copyright terms: Public domain W3C validator