![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrlem2 | Structured version Visualization version GIF version |
Description: Lemma for lshpkrex 34723. The value of tentative functional 𝐺 is a scalar. (Contributed by NM, 16-Jul-2014.) |
Ref | Expression |
---|---|
lshpkrlem.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkrlem.a | ⊢ + = (+g‘𝑊) |
lshpkrlem.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkrlem.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkrlem.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkrlem.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkrlem.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkrlem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkrlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lshpkrlem.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkrlem.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkrlem.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkrlem.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkrlem.o | ⊢ 0 = (0g‘𝐷) |
lshpkrlem.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
Ref | Expression |
---|---|
lshpkrlem2 | ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkrlem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | eqeq1 2655 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍)))) | |
3 | 2 | rexbidv 3081 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
4 | 3 | riotabidv 6653 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
5 | lshpkrlem.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
6 | riotaex 6655 | . . . 4 ⊢ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V | |
7 | 4, 5, 6 | fvmpt 6321 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐺‘𝑋) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
9 | lshpkrlem.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
10 | lshpkrlem.a | . . . 4 ⊢ + = (+g‘𝑊) | |
11 | lshpkrlem.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | lshpkrlem.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
13 | lshpkrlem.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
14 | lshpkrlem.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
15 | lshpkrlem.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
16 | lshpkrlem.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
17 | lshpkrlem.e | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
18 | lshpkrlem.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
19 | lshpkrlem.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
20 | lshpkrlem.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
21 | 9, 10, 11, 12, 13, 14, 15, 16, 1, 17, 18, 19, 20 | lshpsmreu 34714 | . . 3 ⊢ (𝜑 → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) |
22 | riotacl 6665 | . . 3 ⊢ (∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) | |
23 | 21, 22 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) |
24 | 8, 23 | eqeltrd 2730 | 1 ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ∃!wreu 2943 {csn 4210 ↦ cmpt 4762 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Scalarcsca 15991 ·𝑠 cvsca 15992 0gc0g 16147 LSSumclsm 18095 LSpanclspn 19019 LVecclvec 19150 LSHypclsh 34580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-cntz 17796 df-lsm 18097 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-drng 18797 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lvec 19151 df-lshyp 34582 |
This theorem is referenced by: lshpkrlem4 34718 lshpkrlem5 34719 |
Copyright terms: Public domain | W3C validator |