![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatelbN | Structured version Visualization version GIF version |
Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lsatelb.v | ⊢ 𝑉 = (Base‘𝑊) |
lsatelb.o | ⊢ 0 = (0g‘𝑊) |
lsatelb.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatelb.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatelb.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatelb.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lsatelb.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Ref | Expression |
---|---|
lsatelbN | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑈 = (𝑁‘{𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatelb.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
2 | lsatelb.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lsatelb.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
4 | lsatelb.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | 4 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LVec) |
6 | lsatelb.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
7 | 6 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝐴) |
8 | simpr 471 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
9 | lsatelb.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
10 | eldifsn 4453 | . . . . . 6 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
11 | 9, 10 | sylib 208 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) |
12 | 11 | simprd 483 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
13 | 12 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ≠ 0 ) |
14 | 1, 2, 3, 5, 7, 8, 13 | lsatel 34814 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 = (𝑁‘{𝑋})) |
15 | eqimss2 3807 | . . . 4 ⊢ (𝑈 = (𝑁‘{𝑋}) → (𝑁‘{𝑋}) ⊆ 𝑈) | |
16 | 15 | adantl 467 | . . 3 ⊢ ((𝜑 ∧ 𝑈 = (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ⊆ 𝑈) |
17 | lsatelb.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
18 | eqid 2771 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
19 | lveclmod 19319 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
20 | 4, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
21 | 18, 3, 20, 6 | lsatlssel 34806 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
22 | 9 | eldifad 3735 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
23 | 17, 18, 2, 20, 21, 22 | lspsnel5 19208 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
24 | 23 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑈 = (𝑁‘{𝑋})) → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
25 | 16, 24 | mpbird 247 | . 2 ⊢ ((𝜑 ∧ 𝑈 = (𝑁‘{𝑋})) → 𝑋 ∈ 𝑈) |
26 | 14, 25 | impbida 802 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑈 = (𝑁‘{𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 ⊆ wss 3723 {csn 4316 ‘cfv 6031 Basecbs 16064 0gc0g 16308 LModclmod 19073 LSubSpclss 19142 LSpanclspn 19184 LVecclvec 19315 LSAtomsclsa 34783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-sbg 17635 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-lsatoms 34785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |