Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat Structured version   Visualization version   GIF version

Theorem lsatcvat 34852
Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 29579 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat.o 0 = (0g𝑊)
lsatcvat.s 𝑆 = (LSubSp‘𝑊)
lsatcvat.p = (LSSum‘𝑊)
lsatcvat.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat.w (𝜑𝑊 ∈ LVec)
lsatcvat.u (𝜑𝑈𝑆)
lsatcvat.q (𝜑𝑄𝐴)
lsatcvat.r (𝜑𝑅𝐴)
lsatcvat.n (𝜑𝑈 ≠ { 0 })
lsatcvat.l (𝜑𝑈 ⊊ (𝑄 𝑅))
Assertion
Ref Expression
lsatcvat (𝜑𝑈𝐴)

Proof of Theorem lsatcvat
StepHypRef Expression
1 lsatcvat.o . . 3 0 = (0g𝑊)
2 lsatcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lsatcvat.p . . 3 = (LSSum‘𝑊)
4 lsatcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
5 lsatcvat.w . . . 4 (𝜑𝑊 ∈ LVec)
65adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑊 ∈ LVec)
7 lsatcvat.u . . . 4 (𝜑𝑈𝑆)
87adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝑆)
9 lsatcvat.q . . . 4 (𝜑𝑄𝐴)
109adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑄𝐴)
11 lsatcvat.r . . . 4 (𝜑𝑅𝐴)
1211adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑅𝐴)
13 lsatcvat.n . . . 4 (𝜑𝑈 ≠ { 0 })
1413adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈 ≠ { 0 })
15 lsatcvat.l . . . 4 (𝜑𝑈 ⊊ (𝑄 𝑅))
1615adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈 ⊊ (𝑄 𝑅))
17 simpr 471 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → ¬ 𝑄𝑈)
181, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17lsatcvatlem 34851 . 2 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝐴)
195adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑊 ∈ LVec)
207adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈𝑆)
2111adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑅𝐴)
229adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑄𝐴)
2313adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈 ≠ { 0 })
24 lveclmod 19318 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
255, 24syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
26 lmodabl 19119 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2725, 26syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
282lsssssubg 19170 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
2925, 28syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
302, 4, 25, 9lsatlssel 34799 . . . . . . . 8 (𝜑𝑄𝑆)
3129, 30sseldd 3751 . . . . . . 7 (𝜑𝑄 ∈ (SubGrp‘𝑊))
322, 4, 25, 11lsatlssel 34799 . . . . . . . 8 (𝜑𝑅𝑆)
3329, 32sseldd 3751 . . . . . . 7 (𝜑𝑅 ∈ (SubGrp‘𝑊))
343lsmcom 18467 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 𝑅) = (𝑅 𝑄))
3527, 31, 33, 34syl3anc 1475 . . . . . 6 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
3635psseq2d 3848 . . . . 5 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) ↔ 𝑈 ⊊ (𝑅 𝑄)))
3715, 36mpbid 222 . . . 4 (𝜑𝑈 ⊊ (𝑅 𝑄))
3837adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈 ⊊ (𝑅 𝑄))
39 simpr 471 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → ¬ 𝑅𝑈)
401, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39lsatcvatlem 34851 . 2 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈𝐴)
4129, 7sseldd 3751 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
423lsmlub 18284 . . . . . . 7 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄𝑈𝑅𝑈) ↔ (𝑄 𝑅) ⊆ 𝑈))
4331, 33, 41, 42syl3anc 1475 . . . . . 6 (𝜑 → ((𝑄𝑈𝑅𝑈) ↔ (𝑄 𝑅) ⊆ 𝑈))
44 ssnpss 3858 . . . . . 6 ((𝑄 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 𝑅))
4543, 44syl6bi 243 . . . . 5 (𝜑 → ((𝑄𝑈𝑅𝑈) → ¬ 𝑈 ⊊ (𝑄 𝑅)))
4645con2d 131 . . . 4 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) → ¬ (𝑄𝑈𝑅𝑈)))
47 ianor 910 . . . 4 (¬ (𝑄𝑈𝑅𝑈) ↔ (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈))
4846, 47syl6ib 241 . . 3 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) → (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈)))
4915, 48mpd 15 . 2 (𝜑 → (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈))
5018, 40, 49mpjaodan 939 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826   = wceq 1630  wcel 2144  wne 2942  wss 3721  wpss 3722  {csn 4314  cfv 6031  (class class class)co 6792  0gc0g 16307  SubGrpcsubg 17795  LSSumclsm 18255  Abelcabl 18400  LModclmod 19072  LSubSpclss 19141  LVecclvec 19314  LSAtomsclsa 34776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-oppg 17982  df-lsm 18257  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315  df-lsatoms 34778  df-lcv 34821
This theorem is referenced by:  lsatcvat2  34853
  Copyright terms: Public domain W3C validator