Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2 Structured version   Visualization version   GIF version

Theorem lptioo2 40181
Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2.1 𝐽 = (topGen‘ran (,))
lptioo2.2 (𝜑𝐴 ∈ ℝ*)
lptioo2.3 (𝜑𝐵 ∈ ℝ)
lptioo2.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 3771 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) ⊆ (𝐴(,)𝐵))
2 simpr 476 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 ubioo 12245 . . . . . . . . . . . . . 14 ¬ 𝐵 ∈ (𝐴(,)𝐵)
4 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵)))
54biimpcd 239 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐵𝐵 ∈ (𝐴(,)𝐵)))
63, 5mtoi 190 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
76adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
8 velsn 4226 . . . . . . . . . . . 12 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
97, 8sylnibr 318 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐵})
102, 9eldifd 3618 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵}))
1110ex 449 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵})))
1211ssrdv 3642 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∖ {𝐵}))
131, 12eqssd 3653 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) = (𝐴(,)𝐵))
1413ineq2d 3847 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1514ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
16 simplrl 817 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
17 simplrr 818 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
18 lptioo2.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1918ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐴 ∈ ℝ*)
20 elioo3g 12242 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
2120biimpi 206 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
2221simpld 474 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*))
2322simp3d 1095 . . . . . . . 8 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ*)
2423adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 ∈ ℝ*)
25 iooin 12247 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2616, 17, 19, 24, 25syl22anc 1367 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
27 iftrue 4125 . . . . . . . . . . 11 (𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
2827adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
29 lptioo2.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
3029ad3antrrr 766 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 < 𝐵)
3128, 30eqbrtrd 4707 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
32 iffalse 4128 . . . . . . . . . . 11 𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3332adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3421simprd 478 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐵𝐵 < 𝑏))
3534simpld 474 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐵)
3635ad2antlr 763 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 < 𝐵)
3733, 36eqbrtrd 4707 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3831, 37pm2.61dan 849 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3934simprd 478 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 < 𝑏)
4022simp2d 1094 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑎(,)𝑏) → 𝑏 ∈ ℝ*)
41 xrltnle 10143 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4223, 40, 41syl2anc 694 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4339, 42mpbid 222 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → ¬ 𝑏𝐵)
44 iffalse 4128 . . . . . . . . . . 11 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4543, 44syl 17 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4645eqcomd 2657 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4746adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4838, 47breqtrd 4711 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4919, 16ifcld 4164 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
5047, 24eqeltrrd 2731 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
51 ioon0 12239 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5249, 50, 51syl2anc 694 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5348, 52mpbird 247 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5426, 53eqnetrd 2890 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5515, 54eqnetrd 2890 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)
5655ex 449 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
5756ralrimivva 3000 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
58 lptioo2.1 . . 3 𝐽 = (topGen‘ran (,))
59 ioossre 12273 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
6059a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
61 lptioo2.3 . . 3 (𝜑𝐵 ∈ ℝ)
6258, 60, 61islptre 40169 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)))
6357, 62mpbird 247 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  cdif 3604  cin 3606  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  ran crn 5144  cfv 5926  (class class class)co 6690  cr 9973  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  topGenctg 16145  limPtclp 20986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-ioo 12217  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988
This theorem is referenced by:  lptioo2cn  40195  fouriersw  40766
  Copyright terms: Public domain W3C validator