MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpsscls Structured version   Visualization version   GIF version

Theorem lpsscls 21118
Description: The limit points of a subset are included in the subset's closure. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpsscls ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem lpsscls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21lpval 21116 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
3 difss 3868 . . . . 5 (𝑆 ∖ {𝑥}) ⊆ 𝑆
41clsss 21031 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑆) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘𝑆))
53, 4mp3an3 1550 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘𝑆))
65sseld 3731 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
76abssdv 3805 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ ((cls‘𝐽)‘𝑆))
82, 7eqsstrd 3768 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  wcel 2127  {cab 2734  cdif 3700  wss 3703  {csn 4309   cuni 4576  cfv 6037  Topctop 20871  clsccl 20995  limPtclp 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-top 20872  df-cld 20996  df-cls 20998  df-lp 21113
This theorem is referenced by:  lpss  21119  clslp  21125
  Copyright terms: Public domain W3C validator