Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpss2 Structured version   Visualization version   GIF version

Theorem lpss2 33875
 Description: Limit points of a subset are limit points of the larger set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
lpss2.1 𝑋 = 𝐽
Assertion
Ref Expression
lpss2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((limPt‘𝐽)‘𝐵) ⊆ ((limPt‘𝐽)‘𝐴))

Proof of Theorem lpss2
StepHypRef Expression
1 lpss2.1 . 2 𝑋 = 𝐽
21lpss3 21168 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((limPt‘𝐽)‘𝐵) ⊆ ((limPt‘𝐽)‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ⊆ wss 3721  ∪ cuni 4572  ‘cfv 6031  Topctop 20917  limPtclp 21158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-top 20918  df-cld 21043  df-cls 21045  df-lp 21160 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator