Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binomsc Structured version   Visualization version   GIF version

Theorem lply1binomsc 19879
 Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝑋↑𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
lply1binomsc.k 𝐾 = (Base‘𝑅)
lply1binomsc.s 𝑆 = (algSc‘𝑃)
lply1binomsc.h 𝐻 = (mulGrp‘𝑅)
lply1binomsc.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
lply1binomsc ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)

Proof of Theorem lply1binomsc
StepHypRef Expression
1 lply1binomsc.s . . . . . 6 𝑆 = (algSc‘𝑃)
2 eqid 2760 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
3 crngring 18758 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
4 cply1binom.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
54ply1ring 19820 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
63, 5syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
763ad2ant1 1128 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ Ring)
84ply1lmod 19824 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
1093ad2ant1 1128 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ LMod)
11 eqid 2760 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
12 eqid 2760 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
131, 2, 7, 10, 11, 12asclf 19539 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
14 lply1binomsc.k . . . . . . 7 𝐾 = (Base‘𝑅)
154ply1sca 19825 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
16153ad2ant1 1128 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑅 = (Scalar‘𝑃))
1716fveq2d 6356 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1814, 17syl5eq 2806 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐾 = (Base‘(Scalar‘𝑃)))
1918feq2d 6192 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆:𝐾⟶(Base‘𝑃) ↔ 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)))
2013, 19mpbird 247 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:𝐾⟶(Base‘𝑃))
21 simp3 1133 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
2220, 21ffvelrnd 6523 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆𝐴) ∈ (Base‘𝑃))
23 cply1binom.x . . . 4 𝑋 = (var1𝑅)
24 cply1binom.a . . . 4 + = (+g𝑃)
25 cply1binom.m . . . 4 × = (.r𝑃)
26 cply1binom.t . . . 4 · = (.g𝑃)
27 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
28 cply1binom.e . . . 4 = (.g𝐺)
294, 23, 24, 25, 26, 27, 28, 12lply1binom 19878 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ (𝑆𝐴) ∈ (Base‘𝑃)) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
3022, 29syld3an3 1516 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
314ply1assa 19771 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
32313ad2ant1 1128 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ AssAlg)
3332adantr 472 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ AssAlg)
34 fznn0sub 12566 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
3534adantl 473 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
3615fveq2d 6356 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3714, 36syl5eq 2806 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐾 = (Base‘(Scalar‘𝑃)))
3837eleq2d 2825 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝐴𝐾𝐴 ∈ (Base‘(Scalar‘𝑃))))
3938biimpa 502 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
40393adant2 1126 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
4140adantr 472 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
42 eqid 2760 . . . . . . . . . . . . 13 (1r𝑃) = (1r𝑃)
4312, 42ringidcl 18768 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (1r𝑃) ∈ (Base‘𝑃))
446, 43syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → (1r𝑃) ∈ (Base‘𝑃))
45443ad2ant1 1128 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (1r𝑃) ∈ (Base‘𝑃))
4645adantr 472 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (1r𝑃) ∈ (Base‘𝑃))
47 eqid 2760 . . . . . . . . . 10 ( ·𝑠𝑃) = ( ·𝑠𝑃)
48 eqid 2760 . . . . . . . . . 10 (mulGrp‘(Scalar‘𝑃)) = (mulGrp‘(Scalar‘𝑃))
49 eqid 2760 . . . . . . . . . 10 (.g‘(mulGrp‘(Scalar‘𝑃))) = (.g‘(mulGrp‘(Scalar‘𝑃)))
5012, 2, 11, 47, 48, 49, 27, 28assamulgscm 19552 . . . . . . . . 9 ((𝑃 ∈ AssAlg ∧ ((𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘(Scalar‘𝑃)) ∧ (1r𝑃) ∈ (Base‘𝑃))) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
5133, 35, 41, 46, 50syl13anc 1479 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
52 lply1binomsc.e . . . . . . . . . . . . . 14 𝐸 = (.g𝐻)
53 lply1binomsc.h . . . . . . . . . . . . . . . 16 𝐻 = (mulGrp‘𝑅)
5415fveq2d 6356 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (mulGrp‘𝑅) = (mulGrp‘(Scalar‘𝑃)))
5553, 54syl5eq 2806 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝐻 = (mulGrp‘(Scalar‘𝑃)))
5655fveq2d 6356 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (.g𝐻) = (.g‘(mulGrp‘(Scalar‘𝑃))))
5752, 56syl5eq 2806 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
58573ad2ant1 1128 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
5958adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
6059eqcomd 2766 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (.g‘(mulGrp‘(Scalar‘𝑃))) = 𝐸)
6160oveqd 6830 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴) = ((𝑁𝑘)𝐸𝐴))
6227ringmgp 18753 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
636, 62syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
64633ad2ant1 1128 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐺 ∈ Mnd)
6527, 12mgpbas 18695 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝐺)
6627, 42ringidval 18703 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
6765, 28, 66mulgnn0z 17768 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6864, 34, 67syl2an 495 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6961, 68oveq12d 6831 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
7051, 69eqtrd 2794 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
711, 2, 11, 47, 42asclval 19537 . . . . . . . . 9 (𝐴 ∈ (Base‘(Scalar‘𝑃)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7241, 71syl 17 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7372oveq2d 6829 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))))
7453ringmgp 18753 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐻 ∈ Mnd)
753, 74syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝐻 ∈ Mnd)
76753ad2ant1 1128 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐻 ∈ Mnd)
7776adantr 472 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐻 ∈ Mnd)
78 simpr 479 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴𝐾)
7953, 14mgpbas 18695 . . . . . . . . . . . . 13 𝐾 = (Base‘𝐻)
8078, 79syl6eleq 2849 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
81803adant2 1126 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
8281adantr 472 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘𝐻))
83 eqid 2760 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
8483, 52mulgnn0cl 17759 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘𝐻)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8577, 35, 82, 84syl3anc 1477 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8616adantr 472 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 = (Scalar‘𝑃))
8786eqcomd 2766 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Scalar‘𝑃) = 𝑅)
8887fveq2d 6356 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
89 eqid 2760 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
9053, 89mgpbas 18695 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝐻)
9188, 90syl6eq 2810 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻))
9285, 91eleqtrrd 2842 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)))
931, 2, 11, 47, 42asclval 19537 . . . . . . . 8 (((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9492, 93syl 17 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9570, 73, 943eqtr4d 2804 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = (𝑆‘((𝑁𝑘)𝐸𝐴)))
9695oveq1d 6828 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)) = ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))
9796oveq2d 6829 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))) = ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))
9897mpteq2dva 4896 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))))
9998oveq2d 6829 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
10030, 99eqtrd 2794 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ↦ cmpt 4881  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  0cc0 10128   − cmin 10458  ℕ0cn0 11484  ...cfz 12519  Ccbc 13283  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147   Σg cgsu 16303  Mndcmnd 17495  .gcmg 17741  mulGrpcmgp 18689  1rcur 18701  Ringcrg 18747  CRingccrg 18748  LModclmod 19065  AssAlgcasa 19511  algSccascl 19513  var1cv1 19748  Poly1cpl1 19749 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-fac 13255  df-bc 13284  df-hash 13312  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-tset 16162  df-ple 16163  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-srg 18706  df-ring 18749  df-cring 18750  df-subrg 18980  df-lmod 19067  df-lss 19135  df-assa 19514  df-ascl 19516  df-psr 19558  df-mvr 19559  df-mpl 19560  df-opsr 19562  df-psr1 19752  df-vr1 19753  df-ply1 19754 This theorem is referenced by:  chpscmatgsumbin  20851
 Copyright terms: Public domain W3C validator