![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnnelln | Structured version Visualization version GIF version |
Description: No lattice plane is a lattice line. (Contributed by NM, 19-Jun-2012.) |
Ref | Expression |
---|---|
lplnnelln.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnnelln.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnnelln | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 34968 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2651 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | lplnnelln.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
4 | 2, 3 | lplnbase 35138 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
5 | eqid 2651 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 2, 5 | latref 17100 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
7 | 1, 4, 6 | syl2an 493 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → 𝑋(le‘𝐾)𝑋) |
8 | lplnnelln.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
9 | 5, 8, 3 | lplnnlelln 35147 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋(le‘𝐾)𝑋) |
10 | 9 | 3expia 1286 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → (𝑋 ∈ 𝑁 → ¬ 𝑋(le‘𝐾)𝑋)) |
11 | 7, 10 | mt2d 131 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 lecple 15995 Latclat 17092 HLchlt 34955 LLinesclln 35095 LPlanesclpl 35096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 |
This theorem is referenced by: llncvrlpln2 35161 llncvrlpln 35162 |
Copyright terms: Public domain | W3C validator |