![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnexatN | Structured version Visualization version GIF version |
Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnexat.l | ⊢ ≤ = (le‘𝐾) |
lplnexat.j | ⊢ ∨ = (join‘𝐾) |
lplnexat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lplnexat.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnexat.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnexatN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1081 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝐾 ∈ HL) | |
2 | simp3 1083 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑌 ∈ 𝑁) | |
3 | simp2 1082 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑋 ∈ 𝑃) | |
4 | 1, 2, 3 | 3jca 1261 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → (𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃)) |
5 | lplnexat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | eqid 2651 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
7 | lplnexat.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | lplnexat.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
9 | 5, 6, 7, 8 | llncvrlpln2 35161 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
10 | 4, 9 | sylan 487 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
11 | simpl1 1084 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ HL) | |
12 | simpl3 1086 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ 𝑁) | |
13 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 7 | llnbase 35113 | . . . . 5 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ (Base‘𝐾)) |
16 | simpl2 1085 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ 𝑃) | |
17 | 13, 8 | lplnbase 35138 | . . . . 5 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
19 | lplnexat.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
20 | lplnexat.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
21 | 13, 5, 19, 6, 20 | cvrval3 35017 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
22 | 11, 15, 18, 21 | syl3anc 1366 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
23 | eqcom 2658 | . . . . 5 ⊢ ((𝑌 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑞)) | |
24 | 23 | anbi2i 730 | . . . 4 ⊢ ((¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
25 | 24 | rexbii 3070 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
26 | 22, 25 | syl6bb 276 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞)))) |
27 | 10, 26 | mpbid 222 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 lecple 15995 joincjn 16991 ⋖ ccvr 34867 Atomscatm 34868 HLchlt 34955 LLinesclln 35095 LPlanesclpl 35096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |