Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol2 Structured version   Visualization version   GIF version

Theorem lplncvrlvol2 35219
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol2.l = (le‘𝐾)
lplncvrlvol2.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol2.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem lplncvrlvol2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1084 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑌𝑉)
4 lplncvrlvol2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
5 lplncvrlvol2.v . . . . . 6 𝑉 = (LVols‘𝐾)
64, 5lvolnelpln 35194 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
72, 3, 6syl2anc 694 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → ¬ 𝑌𝑃)
8 simpl2 1085 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑃)
9 eleq1 2718 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑃𝑌𝑃))
108, 9syl5ibcom 235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑃))
1110necon3bd 2837 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (¬ 𝑌𝑃𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 lplncvrlvol2.l . . . . 5 = (le‘𝐾)
14 eqid 2651 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 17007 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 977 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1084 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1085 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑃)
20 eqid 2651 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4lplnbase 35138 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑉)
2420, 5lvolbase 35182 . . . . 5 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 476 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2651 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 lplncvrlvol2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2651 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 35016 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3118, 22, 25, 26, 30syl31anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3220, 13, 27, 29, 5islvol2 35184 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
3332adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
34 simpr 476 . . . . . . . . . . 11 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
3520, 13, 27, 29, 4islpln2 35140 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))))
36 simp3rl 1154 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶(𝑋(join‘𝐾)𝑠))
37 simp3rr 1155 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) 𝑌)
38 simp133 1218 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
3938oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
40 simp23 1116 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
4137, 39, 403brtr3d 4716 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
42 simp11 1111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)))
43 simp12 1112 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Atoms‘𝐾))
44 simp3l 1109 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑠 ∈ (Atoms‘𝐾))
45 simp21l 1198 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑡 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1261 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)))
47 simp21r 1199 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑢 ∈ (Atoms‘𝐾))
48 simp22l 1200 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑣 ∈ (Atoms‘𝐾))
49 simp22r 1201 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑤 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1261 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)))
51 simp131 1216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑝𝑞)
52 simp132 1217 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
5336, 38, 393brtr3d 4716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
54 simp111 1210 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ HL)
55 hllat 34968 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ HL → 𝐾 ∈ Lat)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ Lat)
5720, 27, 29hlatjcl 34971 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5842, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5920, 29atbase 34894 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
6043, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Base‘𝐾))
6120, 27latjcl 17098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ Lat ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6256, 58, 60, 61syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6320, 13, 27, 28, 29cvr1 35014 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6454, 62, 44, 63syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6553, 64mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
6613, 27, 294at2 35218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6742, 46, 50, 51, 52, 65, 66syl33anc 1381 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6841, 67mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
6968, 39, 403eqtr4d 2695 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = 𝑌)
7036, 69breqtrd 4711 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶𝑌)
71703exp 1283 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)))
7271exp4a 632 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
73723expd 1306 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))
7473rexlimdv3a 3062 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
75743expib 1287 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))))
7675rexlimdvv 3066 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7776adantld 482 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7835, 77sylbid 230 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑃 → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7978imp31 447 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
8034, 79syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
8180rexlimdvv 3066 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → (∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8281rexlimdvva 3067 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8382adantld 482 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8433, 83sylbid 230 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
85843impia 1280 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))
8685rexlimdv 3059 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))
8786imp 444 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)
8831, 87syldan 486 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8917, 88syldan 486 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  ltcplt 16988  joincjn 16991  Latclat 17092  ccvr 34867  Atomscatm 34868  HLchlt 34955  LPlanesclpl 35096  LVolsclvol 35097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104
This theorem is referenced by:  lplncvrlvol  35220  lvolcmp  35221  2lplnm2N  35225  2lplnmj  35226
  Copyright terms: Public domain W3C validator