![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlnr | Structured version Visualization version GIF version |
Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
lpirlnr | ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpirring 19300 | . 2 ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ Ring) | |
2 | eqid 2651 | . . . . . . . 8 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
3 | eqid 2651 | . . . . . . . 8 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
4 | eqid 2651 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 2, 3, 4 | islpidl 19294 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))) |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ LPIR → (𝑎 ∈ (LPIdeal‘𝑅) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}))) |
7 | 6 | biimpa 500 | . . . . 5 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐})) |
8 | snelpwi 4942 | . . . . . . . . . 10 ⊢ (𝑐 ∈ (Base‘𝑅) → {𝑐} ∈ 𝒫 (Base‘𝑅)) | |
9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ 𝒫 (Base‘𝑅)) |
10 | snfi 8079 | . . . . . . . . . 10 ⊢ {𝑐} ∈ Fin | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ Fin) |
12 | 9, 11 | elind 3831 | . . . . . . . 8 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → {𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin)) |
13 | eqid 2651 | . . . . . . . 8 ⊢ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐}) | |
14 | fveq2 6229 | . . . . . . . . . 10 ⊢ (𝑏 = {𝑐} → ((RSpan‘𝑅)‘𝑏) = ((RSpan‘𝑅)‘{𝑐})) | |
15 | 14 | eqeq2d 2661 | . . . . . . . . 9 ⊢ (𝑏 = {𝑐} → (((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏) ↔ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐}))) |
16 | 15 | rspcev 3340 | . . . . . . . 8 ⊢ (({𝑐} ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘{𝑐})) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)) |
17 | 12, 13, 16 | sylancl 695 | . . . . . . 7 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏)) |
18 | eqeq1 2655 | . . . . . . . 8 ⊢ (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))) | |
19 | 18 | rexbidv 3081 | . . . . . . 7 ⊢ (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → (∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)((RSpan‘𝑅)‘{𝑐}) = ((RSpan‘𝑅)‘𝑏))) |
20 | 17, 19 | syl5ibrcom 237 | . . . . . 6 ⊢ (((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
21 | 20 | rexlimdva 3060 | . . . . 5 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → (∃𝑐 ∈ (Base‘𝑅)𝑎 = ((RSpan‘𝑅)‘{𝑐}) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
22 | 7, 21 | mpd 15 | . . . 4 ⊢ ((𝑅 ∈ LPIR ∧ 𝑎 ∈ (LPIdeal‘𝑅)) → ∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
23 | 22 | ralrimiva 2995 | . . 3 ⊢ (𝑅 ∈ LPIR → ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
24 | eqid 2651 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
25 | 2, 24 | islpir 19297 | . . . . 5 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
26 | 25 | simprbi 479 | . . . 4 ⊢ (𝑅 ∈ LPIR → (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
27 | 26 | raleqdv 3174 | . . 3 ⊢ (𝑅 ∈ LPIR → (∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏) ↔ ∀𝑎 ∈ (LPIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
28 | 23, 27 | mpbird 247 | . 2 ⊢ (𝑅 ∈ LPIR → ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏)) |
29 | 4, 24, 3 | islnr2 38001 | . 2 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∃𝑏 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑎 = ((RSpan‘𝑅)‘𝑏))) |
30 | 1, 28, 29 | sylanbrc 699 | 1 ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ∩ cin 3606 𝒫 cpw 4191 {csn 4210 ‘cfv 5926 Fincfn 7997 Basecbs 15904 Ringcrg 18593 LIdealclidl 19218 RSpancrsp 19219 LPIdealclpidl 19289 LPIRclpir 19290 LNoeRclnr 37996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-mgp 18536 df-ur 18548 df-ring 18595 df-subrg 18826 df-lmod 18913 df-lss 18981 df-lsp 19020 df-sra 19220 df-rgmod 19221 df-lidl 19222 df-rsp 19223 df-lpidl 19291 df-lpir 19292 df-lfig 37955 df-lnm 37963 df-lnr 37997 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |