![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lpigen | Structured version Visualization version GIF version |
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
Ref | Expression |
---|---|
lpigen.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lpigen.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpigen.d | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
lpigen | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpigen.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
2 | eqid 2748 | . . . 4 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
3 | eqid 2748 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | 1, 2, 3 | islpidl 19419 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
5 | 4 | adantr 472 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
6 | lpigen.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
7 | lpigen.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
8 | 3, 6, 2, 7 | lidldvgen 19428 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
9 | 8 | 3expa 1111 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
10 | 9 | rexbidva 3175 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
11 | simpr 479 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) → (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) | |
12 | 3, 6 | lidlss 19383 | . . . . . . . 8 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
13 | 12 | adantl 473 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
14 | 13 | sseld 3731 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑥 ∈ 𝐼 → 𝑥 ∈ (Base‘𝑅))) |
15 | 14 | adantrd 485 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → 𝑥 ∈ (Base‘𝑅))) |
16 | 15 | ancrd 578 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)))) |
17 | 11, 16 | impbid2 216 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
18 | 17 | rexbidv2 3174 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
19 | 5, 10, 18 | 3bitrd 294 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∀wral 3038 ∃wrex 3039 ⊆ wss 3703 {csn 4309 class class class wbr 4792 ‘cfv 6037 Basecbs 16030 Ringcrg 18718 ∥rcdsr 18809 LIdealclidl 19343 RSpancrsp 19344 LPIdealclpidl 19414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-ress 16038 df-plusg 16127 df-mulr 16128 df-sca 16130 df-vsca 16131 df-ip 16132 df-0g 16275 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-grp 17597 df-minusg 17598 df-sbg 17599 df-subg 17763 df-mgp 18661 df-ur 18673 df-ring 18720 df-dvdsr 18812 df-subrg 18951 df-lmod 19038 df-lss 19106 df-lsp 19145 df-sra 19345 df-rgmod 19346 df-lidl 19347 df-rsp 19348 df-lpidl 19416 |
This theorem is referenced by: zringlpir 20010 |
Copyright terms: Public domain | W3C validator |