MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpigen Structured version   Visualization version   GIF version

Theorem lpigen 19429
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
lpigen.u 𝑈 = (LIdeal‘𝑅)
lpigen.p 𝑃 = (LPIdeal‘𝑅)
lpigen.d = (∥r𝑅)
Assertion
Ref Expression
lpigen ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐼,𝑦   𝑥,𝑈,𝑦   𝑥,𝑃,𝑦   𝑥, ,𝑦

Proof of Theorem lpigen
StepHypRef Expression
1 lpigen.p . . . 4 𝑃 = (LPIdeal‘𝑅)
2 eqid 2748 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
3 eqid 2748 . . . 4 (Base‘𝑅) = (Base‘𝑅)
41, 2, 3islpidl 19419 . . 3 (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
54adantr 472 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
6 lpigen.u . . . . 5 𝑈 = (LIdeal‘𝑅)
7 lpigen.d . . . . 5 = (∥r𝑅)
83, 6, 2, 7lidldvgen 19428 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
983expa 1111 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
109rexbidva 3175 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
11 simpr 479 . . . 4 ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) → (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))
123, 6lidlss 19383 . . . . . . . 8 (𝐼𝑈𝐼 ⊆ (Base‘𝑅))
1312adantl 473 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ⊆ (Base‘𝑅))
1413sseld 3731 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑥𝐼𝑥 ∈ (Base‘𝑅)))
1514adantrd 485 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → 𝑥 ∈ (Base‘𝑅)))
1615ancrd 578 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))))
1711, 16impbid2 216 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
1817rexbidv2 3174 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
195, 10, 183bitrd 294 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wral 3038  wrex 3039  wss 3703  {csn 4309   class class class wbr 4792  cfv 6037  Basecbs 16030  Ringcrg 18718  rcdsr 18809  LIdealclidl 19343  RSpancrsp 19344  LPIdealclpidl 19414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-sca 16130  df-vsca 16131  df-ip 16132  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-sbg 17599  df-subg 17763  df-mgp 18661  df-ur 18673  df-ring 18720  df-dvdsr 18812  df-subrg 18951  df-lmod 19038  df-lss 19106  df-lsp 19145  df-sra 19345  df-rgmod 19346  df-lidl 19347  df-rsp 19348  df-lpidl 19416
This theorem is referenced by:  zringlpir  20010
  Copyright terms: Public domain W3C validator