MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpdifsn Structured version   Visualization version   GIF version

Theorem lpdifsn 21149
Description: 𝑃 is a limit point of 𝑆 iff it is a limit point of 𝑆 ∖ {𝑃}. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpdifsn ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃}))))

Proof of Theorem lpdifsn
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21islp 21146 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
3 ssdifss 3884 . . . 4 (𝑆𝑋 → (𝑆 ∖ {𝑃}) ⊆ 𝑋)
41islp 21146 . . . 4 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑃}) ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃}))))
53, 4sylan2 492 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃}))))
6 difabs 4035 . . . . 5 ((𝑆 ∖ {𝑃}) ∖ {𝑃}) = (𝑆 ∖ {𝑃})
76fveq2i 6355 . . . 4 ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))
87eleq2i 2831 . . 3 (𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
95, 8syl6bb 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
102, 9bitr4d 271 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cdif 3712  wss 3715  {csn 4321   cuni 4588  cfv 6049  Topctop 20900  clsccl 21024  limPtclp 21140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-top 20901  df-cld 21025  df-cls 21027  df-lp 21142
This theorem is referenced by:  perfdvf  23866  limcrecl  40364
  Copyright terms: Public domain W3C validator