Step | Hyp | Ref
| Expression |
1 | | nn0uz 11760 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 11427 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 0 ∈ ℤ) |
3 | | eqeq1 2655 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0)) |
4 | | oveq2 6698 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛)) |
5 | 3, 4 | ifbieq2d 4144 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → if(𝑘 = 0, 0, (1 / 𝑘)) = if(𝑛 = 0, 0, (1 / 𝑛))) |
6 | | oveq2 6698 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝐴↑𝑘) = (𝐴↑𝑛)) |
7 | 5, 6 | oveq12d 6708 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
8 | | eqid 2651 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, 0, (1 /
𝑘)) · (𝐴↑𝑘))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))) |
9 | | ovex 6718 |
. . . . . 6
⊢ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) ∈ V |
10 | 7, 8, 9 | fvmpt 6321 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
11 | 10 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
12 | | 0cnd 10071 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ 𝑛 = 0) → 0 ∈
ℂ) |
13 | | simpr 476 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → 𝑛 ∈ ℕ0) |
14 | | elnn0 11332 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
↔ (𝑛 ∈ ℕ
∨ 𝑛 =
0)) |
15 | 13, 14 | sylib 208 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0)) |
16 | 15 | ord 391 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (¬ 𝑛 ∈ ℕ → 𝑛 = 0)) |
17 | 16 | con1d 139 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (¬ 𝑛 = 0 → 𝑛 ∈ ℕ)) |
18 | 17 | imp 444 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ) |
19 | 18 | nnrecred 11104 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℝ) |
20 | 19 | recnd 10106 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℂ) |
21 | 12, 20 | ifclda 4153 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → if(𝑛 = 0, 0, (1 / 𝑛)) ∈ ℂ) |
22 | | expcl 12918 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝐴↑𝑛) ∈
ℂ) |
23 | 22 | adantlr 751 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (𝐴↑𝑛) ∈ ℂ) |
24 | 21, 23 | mulcld 10098 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) ∈ ℂ) |
25 | | logtayllem 24450 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ∈ dom ⇝ ) |
26 | 1, 2, 11, 24, 25 | isumclim2 14533 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
27 | | simpl 472 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 𝐴 ∈
ℂ) |
28 | | 0cn 10070 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
29 | | eqid 2651 |
. . . . . . . . 9
⊢ (abs
∘ − ) = (abs ∘ − ) |
30 | 29 | cnmetdval 22621 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℂ) → (𝐴(abs
∘ − )0) = (abs‘(𝐴 − 0))) |
31 | 27, 28, 30 | sylancl 695 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴(abs ∘
− )0) = (abs‘(𝐴
− 0))) |
32 | | subid1 10339 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
33 | 32 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴 − 0) =
𝐴) |
34 | 33 | fveq2d 6233 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (abs‘(𝐴
− 0)) = (abs‘𝐴)) |
35 | 31, 34 | eqtrd 2685 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴(abs ∘
− )0) = (abs‘𝐴)) |
36 | | simpr 476 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (abs‘𝐴) <
1) |
37 | 35, 36 | eqbrtrd 4707 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴(abs ∘
− )0) < 1) |
38 | | cnxmet 22623 |
. . . . . . 7
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
39 | | 1rp 11874 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
40 | | rpxr 11878 |
. . . . . . . 8
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
41 | 39, 40 | ax-mp 5 |
. . . . . . 7
⊢ 1 ∈
ℝ* |
42 | | elbl3 22244 |
. . . . . . 7
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → (𝐴 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝐴(abs ∘
− )0) < 1)) |
43 | 38, 41, 42 | mpanl12 718 |
. . . . . 6
⊢ ((0
∈ ℂ ∧ 𝐴
∈ ℂ) → (𝐴
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) <
1)) |
44 | 28, 27, 43 | sylancr 696 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴 ∈
(0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) <
1)) |
45 | 37, 44 | mpbird 247 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 𝐴 ∈
(0(ball‘(abs ∘ − ))1)) |
46 | | tru 1527 |
. . . . . 6
⊢
⊤ |
47 | | eqid 2651 |
. . . . . . . 8
⊢
(0(ball‘(abs ∘ − ))1) = (0(ball‘(abs ∘
− ))1) |
48 | | 0cnd 10071 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ ℂ) |
49 | 41 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 1 ∈ ℝ*) |
50 | | ax-1cn 10032 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
51 | | blssm 22270 |
. . . . . . . . . . . . . . 15
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ⊆ ℂ) |
52 | 38, 28, 41, 51 | mp3an 1464 |
. . . . . . . . . . . . . 14
⊢
(0(ball‘(abs ∘ − ))1) ⊆ ℂ |
53 | 52 | sseli 3632 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 𝑦 ∈ ℂ) |
54 | | subcl 10318 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → (1 − 𝑦) ∈ ℂ) |
55 | 50, 53, 54 | sylancr 696 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − 𝑦) ∈ ℂ) |
56 | 53 | abscld 14219 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) ∈ ℝ) |
57 | 29 | cnmetdval 22621 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑦(abs
∘ − )0) = (abs‘(𝑦 − 0))) |
58 | 53, 28, 57 | sylancl 695 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘(𝑦 − 0))) |
59 | 53 | subid1d 10419 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦 − 0) = 𝑦) |
60 | 59 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(𝑦 − 0)) = (abs‘𝑦)) |
61 | 58, 60 | eqtrd 2685 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘𝑦)) |
62 | | elbl3 22244 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑦(abs ∘
− )0) < 1)) |
63 | 38, 41, 62 | mpanl12 718 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑦
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) <
1)) |
64 | 28, 53, 63 | sylancr 696 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑦(abs ∘
− )0) < 1)) |
65 | 64 | ibi 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦(abs ∘ − )0) <
1) |
66 | 61, 65 | eqbrtrrd 4709 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) < 1) |
67 | 56, 66 | gtned 10210 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 1 ≠ (abs‘𝑦)) |
68 | | abs1 14081 |
. . . . . . . . . . . . . . . 16
⊢
(abs‘1) = 1 |
69 | | fveq2 6229 |
. . . . . . . . . . . . . . . 16
⊢ (1 =
𝑦 → (abs‘1) =
(abs‘𝑦)) |
70 | 68, 69 | syl5eqr 2699 |
. . . . . . . . . . . . . . 15
⊢ (1 =
𝑦 → 1 =
(abs‘𝑦)) |
71 | 70 | necon3i 2855 |
. . . . . . . . . . . . . 14
⊢ (1 ≠
(abs‘𝑦) → 1 ≠
𝑦) |
72 | 67, 71 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 1 ≠ 𝑦) |
73 | | subeq0 10345 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → ((1 − 𝑦) = 0 ↔ 1 = 𝑦)) |
74 | 73 | necon3bid 2867 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦)) |
75 | 50, 53, 74 | sylancr 696 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦)) |
76 | 72, 75 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − 𝑦) ≠ 0) |
77 | 55, 76 | logcld 24362 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (log‘(1 − 𝑦)) ∈ ℂ) |
78 | 77 | negcld 10417 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → -(log‘(1 − 𝑦)) ∈ ℂ) |
79 | 78 | adantl 481 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → -(log‘(1 −
𝑦)) ∈
ℂ) |
80 | | eqid 2651 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦))) |
81 | 79, 80 | fmptd 6425 |
. . . . . . . 8
⊢ (⊤
→ (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))):(0(ball‘(abs ∘
− ))1)⟶ℂ) |
82 | 53 | absge0d 14227 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ≤ (abs‘𝑦)) |
83 | 56 | rexrd 10127 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) ∈
ℝ*) |
84 | | peano2re 10247 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘𝑦)
∈ ℝ → ((abs‘𝑦) + 1) ∈ ℝ) |
85 | 56, 84 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) + 1) ∈ ℝ) |
86 | 85 | rehalfcld 11317 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℝ) |
87 | 86 | rexrd 10127 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈
ℝ*) |
88 | | iccssxr 12294 |
. . . . . . . . . . . . . . 15
⊢
(0[,]+∞) ⊆ ℝ* |
89 | | eqeq1 2655 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑗 → (𝑚 = 0 ↔ 𝑗 = 0)) |
90 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗)) |
91 | 89, 90 | ifbieq2d 4144 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑗 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑗 = 0, 0, (1 / 𝑗))) |
92 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 0, (1 /
𝑚))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))) |
93 | | c0ex 10072 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
V |
94 | | ovex 6718 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 /
𝑗) ∈
V |
95 | 93, 94 | ifex 4189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(𝑗 = 0, 0, (1 / 𝑗)) ∈ V |
96 | 91, 92, 95 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) = if(𝑗 = 0, 0, (1 / 𝑗))) |
97 | 96 | eqcomd 2657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ0
→ if(𝑗 = 0, 0, (1 /
𝑗)) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗)) |
98 | 97 | oveq1d 6705 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ0
→ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗)) = (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥↑𝑗))) |
99 | 98 | mpteq2ia 4773 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 0, (1 /
𝑚)))‘𝑗) · (𝑥↑𝑗))) |
100 | 99 | mpteq2i 4774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 0, (1 /
𝑚)))‘𝑗) · (𝑥↑𝑗)))) |
101 | | 0cnd 10071 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑚
∈ ℕ0) ∧ 𝑚 = 0) → 0 ∈
ℂ) |
102 | | nn0cn 11340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
103 | 102 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑚
∈ ℕ0) → 𝑚 ∈ ℂ) |
104 | | df-ne 2824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ≠ 0 ↔ ¬ 𝑚 = 0) |
105 | 104 | biimpri 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑚 = 0 → 𝑚 ≠ 0) |
106 | | reccl 10730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) → (1 / 𝑚) ∈
ℂ) |
107 | 103, 105,
106 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑚
∈ ℕ0) ∧ ¬ 𝑚 = 0) → (1 / 𝑚) ∈ ℂ) |
108 | 101, 107 | ifclda 4153 |
. . . . . . . . . . . . . . . . 17
⊢
((⊤ ∧ 𝑚
∈ ℕ0) → if(𝑚 = 0, 0, (1 / 𝑚)) ∈ ℂ) |
109 | 108, 92 | fmptd 6425 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ) |
110 | | recn 10064 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟 ∈ ℝ → 𝑟 ∈
ℂ) |
111 | | oveq1 6697 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑟 → (𝑥↑𝑗) = (𝑟↑𝑗)) |
112 | 111 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑟 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗))) |
113 | 112 | mpteq2dv 4778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑟 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) |
114 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)))) |
115 | | nn0ex 11336 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
ℕ0 ∈ V |
116 | 115 | mptex 6527 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗))) ∈ V |
117 | 113, 114,
116 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) |
118 | 110, 117 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℝ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) |
119 | 118 | eqcomd 2657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 ∈ ℝ → (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗))) = ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟)) |
120 | 119 | seqeq3d 12849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ ℝ → seq0( + ,
(𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) = seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟))) |
121 | 120 | eleq1d 2715 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℝ → (seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ ↔ seq0( + ,
((𝑥 ∈ ℂ ↦
(𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟)) ∈ dom ⇝ )) |
122 | 121 | rabbiia 3215 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( +
, ((𝑥 ∈ ℂ
↦ (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟)) ∈ dom ⇝ } |
123 | 122 | supeq1i 8394 |
. . . . . . . . . . . . . . . 16
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
124 | 100, 109,
123 | radcnvcl 24216 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ (0[,]+∞)) |
125 | 88, 124 | sseldi 3634 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ*) |
126 | 46, 125 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ*) |
127 | | 1re 10077 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
128 | | avglt1 11308 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘𝑦)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2))) |
129 | 56, 127, 128 | sylancl 695 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2))) |
130 | 66, 129 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) < (((abs‘𝑦) + 1) / 2)) |
131 | | 0red 10079 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ∈ ℝ) |
132 | 131, 56, 86, 82, 130 | lelttrd 10233 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 < (((abs‘𝑦) + 1) / 2)) |
133 | 131, 86, 132 | ltled 10223 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ≤ (((abs‘𝑦) + 1) / 2)) |
134 | 86, 133 | absidd 14205 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) = (((abs‘𝑦) + 1) / 2)) |
135 | 46, 109 | mp1i 13 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ) |
136 | 86 | recnd 10106 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℂ) |
137 | | oveq1 6697 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑥↑𝑗) = ((((abs‘𝑦) + 1) / 2)↑𝑗)) |
138 | 137 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (((abs‘𝑦) + 1) / 2) → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))) |
139 | 138 | mpteq2dv 4778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) |
140 | 115 | mptex 6527 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) ·
((((abs‘𝑦) + 1) /
2)↑𝑗))) ∈
V |
141 | 139, 114,
140 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . 18
⊢
((((abs‘𝑦) +
1) / 2) ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) |
142 | 136, 141 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) |
143 | 142 | seqeq3d 12849 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2))) = seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))) |
144 | | avglt2 11309 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((abs‘𝑦)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) <
1)) |
145 | 56, 127, 144 | sylancl 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) <
1)) |
146 | 66, 145 | mpbid 222 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) < 1) |
147 | 134, 146 | eqbrtrd 4707 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) < 1) |
148 | | logtayllem 24450 |
. . . . . . . . . . . . . . . . 17
⊢
(((((abs‘𝑦) +
1) / 2) ∈ ℂ ∧ (abs‘(((abs‘𝑦) + 1) / 2)) < 1) → seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) ·
((((abs‘𝑦) + 1) /
2)↑𝑗)))) ∈ dom
⇝ ) |
149 | 136, 147,
148 | syl2anc 694 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ ) |
150 | 143, 149 | eqeltrd 2730 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2))) ∈ dom ⇝
) |
151 | 100, 135,
123, 136, 150 | radcnvle 24219 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) |
152 | 134, 151 | eqbrtrrd 4709 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) |
153 | 83, 87, 126, 130, 152 | xrltletrd 12030 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) |
154 | | 0re 10078 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
155 | | elico2 12275 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ sup({𝑟
∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ*) →
((abs‘𝑦) ∈
(0[,)sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤
(abs‘𝑦) ∧
(abs‘𝑦) <
sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
156 | 154, 126,
155 | sylancr 696 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤
(abs‘𝑦) ∧
(abs‘𝑦) <
sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
157 | 56, 82, 153, 156 | mpbir3and 1264 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) |
158 | | absf 14121 |
. . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ |
159 | | ffn 6083 |
. . . . . . . . . . . 12
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
160 | | elpreima 6377 |
. . . . . . . . . . . 12
⊢ (abs Fn
ℂ → (𝑦 ∈
(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))))) |
161 | 158, 159,
160 | mp2b 10 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
162 | 53, 157, 161 | sylanbrc 699 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
163 | | cnvimass 5520 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ⊆ dom abs |
164 | 158 | fdmi 6090 |
. . . . . . . . . . . . . . . . . 18
⊢ dom abs =
ℂ |
165 | 163, 164 | sseqtri 3670 |
. . . . . . . . . . . . . . . . 17
⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ⊆ ℂ |
166 | 165 | sseli 3632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) → 𝑦 ∈ ℂ) |
167 | | oveq1 6697 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → (𝑥↑𝑗) = (𝑦↑𝑗)) |
168 | 167 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗))) |
169 | 168 | mpteq2dv 4778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))) |
170 | 115 | mptex 6527 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑦↑𝑗))) ∈ V |
171 | 169, 114,
170 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))) |
172 | 171 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ ((𝑥 ∈ ℂ
↦ (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))) |
173 | 172 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (((𝑥 ∈ ℂ
↦ (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛) = ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))‘𝑛)) |
174 | | eqeq1 2655 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0)) |
175 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑛 → (1 / 𝑗) = (1 / 𝑛)) |
176 | 174, 175 | ifbieq2d 4144 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑛 → if(𝑗 = 0, 0, (1 / 𝑗)) = if(𝑛 = 0, 0, (1 / 𝑛))) |
177 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑛 → (𝑦↑𝑗) = (𝑦↑𝑛)) |
178 | 176, 177 | oveq12d 6708 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑛 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
179 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑦↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗))) |
180 | | ovex 6718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ V |
181 | 178, 179,
180 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ ((𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
182 | 181 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ ((𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
183 | 173, 182 | eqtr2d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (if(𝑛 = 0, 0, (1 /
𝑛)) · (𝑦↑𝑛)) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
184 | 183 | sumeq2dv 14477 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℂ →
Σ𝑛 ∈
ℕ0 (if(𝑛 =
0, 0, (1 / 𝑛)) ·
(𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
185 | 166, 184 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
186 | 185 | mpteq2ia 4773 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) = (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
187 | | eqid 2651 |
. . . . . . . . . . . . . 14
⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) = (◡abs
“ (0[,)sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) |
188 | | eqid 2651 |
. . . . . . . . . . . . . 14
⊢
if(sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1)) = if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1)) |
189 | 100, 186,
109, 123, 187, 188 | psercn 24225 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) ∈ ((◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))–cn→ℂ)) |
190 | | cncff 22743 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) ∈ ((◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))–cn→ℂ) → (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))):(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))⟶ℂ) |
191 | 189, 190 | syl 17 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))):(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))⟶ℂ) |
192 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) = (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
193 | 192 | fmpt 6421 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ ℂ ↔ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))):(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))⟶ℂ) |
194 | 191, 193 | sylibr 224 |
. . . . . . . . . . 11
⊢ (⊤
→ ∀𝑦 ∈
(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ ℂ) |
195 | 194 | r19.21bi 2961 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑦
∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ ℂ) |
196 | 162, 195 | sylan2 490 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → Σ𝑛 ∈ ℕ0
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ ℂ) |
197 | | eqid 2651 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
198 | 196, 197 | fmptd 6425 |
. . . . . . . 8
⊢ (⊤
→ (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))):(0(ball‘(abs ∘ −
))1)⟶ℂ) |
199 | | cnelprrecn 10067 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ {ℝ, ℂ} |
200 | 199 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ ℂ ∈ {ℝ, ℂ}) |
201 | 77 | adantl 481 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → (log‘(1 −
𝑦)) ∈
ℂ) |
202 | | ovexd 6720 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → ((1 / (1 − 𝑦)) · -1) ∈
V) |
203 | 29 | cnmetdval 22621 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℂ ∧ (1 − 𝑦) ∈ ℂ) → (1(abs ∘
− )(1 − 𝑦)) =
(abs‘(1 − (1 − 𝑦)))) |
204 | 50, 55, 203 | sylancr 696 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘(1 − (1
− 𝑦)))) |
205 | | nncan 10348 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦) |
206 | 50, 53, 205 | sylancr 696 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − (1 − 𝑦)) = 𝑦) |
207 | 206 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(1 − (1 − 𝑦))) = (abs‘𝑦)) |
208 | 204, 207 | eqtrd 2685 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘𝑦)) |
209 | 208, 66 | eqbrtrd 4707 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) < 1) |
210 | | elbl 22240 |
. . . . . . . . . . . . . . . 16
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ
∧ 1 ∈ ℝ*) → ((1 − 𝑦) ∈ (1(ball‘(abs ∘ −
))1) ↔ ((1 − 𝑦)
∈ ℂ ∧ (1(abs ∘ − )(1 − 𝑦)) < 1))) |
211 | 38, 50, 41, 210 | mp3an 1464 |
. . . . . . . . . . . . . . 15
⊢ ((1
− 𝑦) ∈
(1(ball‘(abs ∘ − ))1) ↔ ((1 − 𝑦) ∈ ℂ ∧ (1(abs ∘ −
)(1 − 𝑦)) <
1)) |
212 | 55, 209, 211 | sylanbrc 699 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − 𝑦) ∈ (1(ball‘(abs ∘ −
))1)) |
213 | 212 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → (1 − 𝑦) ∈ (1(ball‘(abs
∘ − ))1)) |
214 | | neg1cn 11162 |
. . . . . . . . . . . . . 14
⊢ -1 ∈
ℂ |
215 | 214 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → -1 ∈
ℂ) |
216 | | eqid 2651 |
. . . . . . . . . . . . . . . . . 18
⊢
(1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘
− ))1) |
217 | 216 | dvlog2lem 24443 |
. . . . . . . . . . . . . . . . 17
⊢
(1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖
(-∞(,]0)) |
218 | 217 | sseli 3632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → 𝑥 ∈ (ℂ ∖
(-∞(,]0))) |
219 | 218 | eldifad 3619 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → 𝑥 ∈ ℂ) |
220 | | eqid 2651 |
. . . . . . . . . . . . . . . . 17
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
221 | 220 | logdmn0 24431 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (ℂ ∖
(-∞(,]0)) → 𝑥
≠ 0) |
222 | 218, 221 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → 𝑥 ≠ 0) |
223 | 219, 222 | logcld 24362 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → (log‘𝑥) ∈ ℂ) |
224 | 223 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(ball‘(abs ∘ − ))1)) → (log‘𝑥) ∈
ℂ) |
225 | | ovexd 6720 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(ball‘(abs ∘ − ))1)) → (1 / 𝑥) ∈ V) |
226 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑦
∈ ℂ) → 𝑦
∈ ℂ) |
227 | 50, 226, 54 | sylancr 696 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑦
∈ ℂ) → (1 − 𝑦) ∈ ℂ) |
228 | 214 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑦
∈ ℂ) → -1 ∈ ℂ) |
229 | | 1cnd 10094 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑦
∈ ℂ) → 1 ∈ ℂ) |
230 | | 0cnd 10071 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑦
∈ ℂ) → 0 ∈ ℂ) |
231 | | 1cnd 10094 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ 1 ∈ ℂ) |
232 | 200, 231 | dvmptc 23766 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ 1)) = (𝑦
∈ ℂ ↦ 0)) |
233 | 200 | dvmptid 23765 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ 𝑦)) =
(𝑦 ∈ ℂ ↦
1)) |
234 | 200, 229,
230, 232, 226, 229, 233 | dvmptsub 23775 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ (0 −
1))) |
235 | | df-neg 10307 |
. . . . . . . . . . . . . . . 16
⊢ -1 = (0
− 1) |
236 | 235 | mpteq2i 4774 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℂ ↦ -1) =
(𝑦 ∈ ℂ ↦
(0 − 1)) |
237 | 234, 236 | syl6eqr 2703 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ -1)) |
238 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (0(ball‘(abs ∘ − ))1) ⊆
ℂ) |
239 | | eqid 2651 |
. . . . . . . . . . . . . . . . 17
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
240 | 239 | cnfldtop 22634 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) ∈ Top |
241 | 239 | cnfldtopon 22633 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
242 | 241 | toponunii 20769 |
. . . . . . . . . . . . . . . . 17
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
243 | 242 | restid 16141 |
. . . . . . . . . . . . . . . 16
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
244 | 240, 243 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
245 | 244 | eqcomi 2660 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
246 | 239 | cnfldtopn 22632 |
. . . . . . . . . . . . . . . . 17
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
247 | 246 | blopn 22352 |
. . . . . . . . . . . . . . . 16
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ∈ (TopOpen‘ℂfld)) |
248 | 38, 28, 41, 247 | mp3an 1464 |
. . . . . . . . . . . . . . 15
⊢
(0(ball‘(abs ∘ − ))1) ∈
(TopOpen‘ℂfld) |
249 | 248 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (0(ball‘(abs ∘ − ))1) ∈
(TopOpen‘ℂfld)) |
250 | 200, 227,
228, 237, 238, 245, 239, 249 | dvmptres 23771 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ (1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -1)) |
251 | 216 | dvlog2 24444 |
. . . . . . . . . . . . . 14
⊢ (ℂ
D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑥 ∈ (1(ball‘(abs ∘ −
))1) ↦ (1 / 𝑥)) |
252 | | logf1o 24356 |
. . . . . . . . . . . . . . . . . . . 20
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
253 | | f1of 6175 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
254 | 252, 253 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
log:(ℂ ∖ {0})⟶ran log |
255 | 220 | logdmss 24433 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℂ
∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
256 | 217, 255 | sstri 3645 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖
{0}) |
257 | | fssres 6108 |
. . . . . . . . . . . . . . . . . . 19
⊢
((log:(ℂ ∖ {0})⟶ran log ∧ (1(ball‘(abs
∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾
(1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ −
))1)⟶ran log) |
258 | 254, 256,
257 | mp2an 708 |
. . . . . . . . . . . . . . . . . 18
⊢ (log
↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘
− ))1)⟶ran log |
259 | 258 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs
∘ − ))1)⟶ran log) |
260 | 259 | feqmptd 6288 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑥))) |
261 | | fvres 6245 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑥) =
(log‘𝑥)) |
262 | 261 | mpteq2ia 4773 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑥)) = (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ (log‘𝑥)) |
263 | 260, 262 | syl6eq 2701 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ (log‘𝑥))) |
264 | 263 | oveq2d 6706 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) =
(ℂ D (𝑥 ∈
(1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥)))) |
265 | 251, 264 | syl5reqr 2700 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℂ D (𝑥 ∈
(1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))) = (𝑥 ∈ (1(ball‘(abs ∘ −
))1) ↦ (1 / 𝑥))) |
266 | | fveq2 6229 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1 − 𝑦) → (log‘𝑥) = (log‘(1 − 𝑦))) |
267 | | oveq2 6698 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1 − 𝑦) → (1 / 𝑥) = (1 / (1 − 𝑦))) |
268 | 200, 200,
213, 215, 224, 225, 250, 265, 266, 267 | dvmptco 23780 |
. . . . . . . . . . . 12
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ (log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ ((1 / (1 − 𝑦)) · -1))) |
269 | 200, 201,
202, 268 | dvmptneg 23774 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -((1 / (1 − 𝑦)) · -1))) |
270 | 55, 76 | reccld 10832 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 / (1 − 𝑦)) ∈ ℂ) |
271 | | mulcom 10060 |
. . . . . . . . . . . . . . . 16
⊢ (((1 / (1
− 𝑦)) ∈ ℂ
∧ -1 ∈ ℂ) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1
− 𝑦)))) |
272 | 270, 214,
271 | sylancl 695 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1
− 𝑦)))) |
273 | 270 | mulm1d 10520 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (-1 · (1 / (1 − 𝑦))) = -(1 / (1 − 𝑦))) |
274 | 272, 273 | eqtrd 2685 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = -(1 / (1 − 𝑦))) |
275 | 274 | negeqd 10313 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = --(1 / (1 − 𝑦))) |
276 | 270 | negnegd 10421 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → --(1 / (1 − 𝑦)) = (1 / (1 − 𝑦))) |
277 | 275, 276 | eqtrd 2685 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = (1 / (1 − 𝑦))) |
278 | 277 | mpteq2ia 4773 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ -((1 / (1 − 𝑦)) · -1)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦))) |
279 | 269, 278 | syl6eq 2701 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦)))) |
280 | 279 | dmeqd 5358 |
. . . . . . . . 9
⊢ (⊤
→ dom (ℂ D (𝑦
∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 −
𝑦)))) = dom (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ (1 / (1 − 𝑦)))) |
281 | | dmmptg 5670 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
(0(ball‘(abs ∘ − ))1)(1 / (1 − 𝑦)) ∈ V → dom (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘ −
))1)) |
282 | | ovexd 6720 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 / (1 − 𝑦)) ∈ V) |
283 | 281, 282 | mprg 2955 |
. . . . . . . . 9
⊢ dom
(𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘
− ))1) |
284 | 280, 283 | syl6eq 2701 |
. . . . . . . 8
⊢ (⊤
→ dom (ℂ D (𝑦
∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 −
𝑦)))) = (0(ball‘(abs
∘ − ))1)) |
285 | | sumex 14462 |
. . . . . . . . . . . 12
⊢
Σ𝑛 ∈
ℕ ((𝑛 ·
((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V |
286 | 285 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑦
∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V) |
287 | | fveq2 6229 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘)) |
288 | 287 | cbvsumv 14470 |
. . . . . . . . . . . . . 14
⊢
Σ𝑛 ∈
ℕ0 (((𝑥
∈ ℂ ↦ (𝑗
∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘) |
289 | 185, 288 | syl6eq 2701 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘)) |
290 | 289 | mpteq2ia 4773 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) = (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘)) |
291 | | eqid 2651 |
. . . . . . . . . . . 12
⊢
(0(ball‘(abs ∘ − ))(((abs‘𝑧) + if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2)) = (0(ball‘(abs ∘
− ))(((abs‘𝑧) +
if(sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2)) |
292 | 100, 290,
109, 123, 187, 188, 291 | pserdv2 24229 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑦 ∈
(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) = (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
293 | 162 | ssriv 3640 |
. . . . . . . . . . . 12
⊢
(0(ball‘(abs ∘ − ))1) ⊆ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) |
294 | 293 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ (0(ball‘(abs ∘ − ))1) ⊆ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
295 | 200, 195,
286, 292, 294, 245, 239, 249 | dvmptres 23771 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ ((𝑛 ·
((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
296 | | nnnn0 11337 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
297 | 296 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
298 | | eqeq1 2655 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (𝑚 = 0 ↔ 𝑛 = 0)) |
299 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛)) |
300 | 298, 299 | ifbieq2d 4144 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑛 = 0, 0, (1 / 𝑛))) |
301 | | ovex 6718 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 /
𝑛) ∈
V |
302 | 93, 301 | ifex 4189 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(𝑛 = 0, 0, (1 / 𝑛)) ∈ V |
303 | 300, 92, 302 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛))) |
304 | 297, 303 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛))) |
305 | | nnne0 11091 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
306 | 305 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
307 | 306 | neneqd 2828 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0) |
308 | 307 | iffalsed 4130 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛)) |
309 | 304, 308 | eqtrd 2685 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = (1 / 𝑛)) |
310 | 309 | oveq2d 6706 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = (𝑛 · (1 / 𝑛))) |
311 | | nncn 11066 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
312 | 311 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
313 | 312, 306 | recidd 10834 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · (1 / 𝑛)) = 1) |
314 | 310, 313 | eqtrd 2685 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = 1) |
315 | 314 | oveq1d 6705 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 · (𝑦↑(𝑛 − 1)))) |
316 | | nnm1nn0 11372 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
317 | | expcl 12918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℂ ∧ (𝑛 − 1) ∈
ℕ0) → (𝑦↑(𝑛 − 1)) ∈ ℂ) |
318 | 53, 316, 317 | syl2an 493 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑦↑(𝑛 − 1)) ∈ ℂ) |
319 | 318 | mulid2d 10096 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (1 · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1))) |
320 | 315, 319 | eqtrd 2685 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1))) |
321 | 320 | sumeq2dv 14477 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1))) |
322 | | nnuz 11761 |
. . . . . . . . . . . . . . 15
⊢ ℕ =
(ℤ≥‘1) |
323 | | 1e0p1 11590 |
. . . . . . . . . . . . . . . 16
⊢ 1 = (0 +
1) |
324 | 323 | fveq2i 6232 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) |
325 | 322, 324 | eqtri 2673 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
326 | | oveq1 6697 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (1 + 𝑚) → (𝑛 − 1) = ((1 + 𝑚) − 1)) |
327 | 326 | oveq2d 6706 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (1 + 𝑚) → (𝑦↑(𝑛 − 1)) = (𝑦↑((1 + 𝑚) − 1))) |
328 | | 1zzd 11446 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 1 ∈ ℤ) |
329 | | 0zd 11427 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ∈ ℤ) |
330 | 1, 325, 327, 328, 329, 318 | isumshft 14615 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑((1 + 𝑚) − 1))) |
331 | | pncan2 10326 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℂ ∧ 𝑚
∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚) |
332 | 50, 102, 331 | sylancr 696 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ ((1 + 𝑚) − 1)
= 𝑚) |
333 | 332 | oveq2d 6706 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (𝑦↑((1 + 𝑚) − 1)) = (𝑦↑𝑚)) |
334 | 333 | sumeq2i 14473 |
. . . . . . . . . . . . 13
⊢
Σ𝑚 ∈
ℕ0 (𝑦↑((1 + 𝑚) − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑𝑚) |
335 | 330, 334 | syl6eq 2701 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑𝑚)) |
336 | | geoisum 14652 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℂ ∧
(abs‘𝑦) < 1)
→ Σ𝑚 ∈
ℕ0 (𝑦↑𝑚) = (1 / (1 − 𝑦))) |
337 | 53, 66, 336 | syl2anc 694 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑚 ∈ ℕ0 (𝑦↑𝑚) = (1 / (1 − 𝑦))) |
338 | 321, 335,
337 | 3eqtrd 2689 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 / (1 − 𝑦))) |
339 | 338 | mpteq2ia 4773 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦))) |
340 | 295, 339 | syl6eq 2701 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦)))) |
341 | 279, 340 | eqtr4d 2688 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (ℂ D (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))))) |
342 | | blcntr 22265 |
. . . . . . . . . 10
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘
− ))1)) |
343 | 38, 28, 39, 342 | mp3an 1464 |
. . . . . . . . 9
⊢ 0 ∈
(0(ball‘(abs ∘ − ))1) |
344 | 343 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ (0(ball‘(abs ∘ − ))1)) |
345 | | oveq2 6698 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 0 → (1 − 𝑦) = (1 −
0)) |
346 | | 1m0e1 11169 |
. . . . . . . . . . . . . . . 16
⊢ (1
− 0) = 1 |
347 | 345, 346 | syl6eq 2701 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 0 → (1 − 𝑦) = 1) |
348 | 347 | fveq2d 6233 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → (log‘(1
− 𝑦)) =
(log‘1)) |
349 | | log1 24377 |
. . . . . . . . . . . . . 14
⊢
(log‘1) = 0 |
350 | 348, 349 | syl6eq 2701 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → (log‘(1
− 𝑦)) =
0) |
351 | 350 | negeqd 10313 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → -(log‘(1
− 𝑦)) =
-0) |
352 | | neg0 10365 |
. . . . . . . . . . . 12
⊢ -0 =
0 |
353 | 351, 352 | syl6eq 2701 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → -(log‘(1
− 𝑦)) =
0) |
354 | 353, 80, 93 | fvmpt 6321 |
. . . . . . . . . 10
⊢ (0 ∈
(0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦)))‘0) = 0) |
355 | 343, 354 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) =
0) |
356 | | oveq1 6697 |
. . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑛 = 0, 0, (1 / 𝑛)) → (0 · (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
357 | 356 | eqeq1d 2653 |
. . . . . . . . . . . . . 14
⊢ (0 =
if(𝑛 = 0, 0, (1 / 𝑛)) → ((0 · (𝑦↑𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0)) |
358 | | oveq1 6697 |
. . . . . . . . . . . . . . 15
⊢ ((1 /
𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → ((1 / 𝑛) · (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
359 | 358 | eqeq1d 2653 |
. . . . . . . . . . . . . 14
⊢ ((1 /
𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → (((1 / 𝑛) · (𝑦↑𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0)) |
360 | | simpll 805 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 = 0) |
361 | 360, 28 | syl6eqel 2738 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 ∈ ℂ) |
362 | | simplr 807 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑛 ∈ ℕ0) |
363 | 361, 362 | expcld 13048 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (𝑦↑𝑛) ∈ ℂ) |
364 | 363 | mul02d 10272 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (0 · (𝑦↑𝑛)) = 0) |
365 | | simpll 805 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑦 = 0) |
366 | 365 | oveq1d 6705 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (𝑦↑𝑛) = (0↑𝑛)) |
367 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
368 | 367, 14 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0)) |
369 | 368 | ord 391 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬
𝑛 ∈ ℕ →
𝑛 = 0)) |
370 | 369 | con1d 139 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬
𝑛 = 0 → 𝑛 ∈
ℕ)) |
371 | 370 | imp 444 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ∈
ℕ) |
372 | 371 | 0expd 13064 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (0↑𝑛) = 0) |
373 | 366, 372 | eqtrd 2685 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (𝑦↑𝑛) = 0) |
374 | 373 | oveq2d 6706 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((1 / 𝑛) · (𝑦↑𝑛)) = ((1 / 𝑛) · 0)) |
375 | 371 | nnrecred 11104 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (1 / 𝑛) ∈
ℝ) |
376 | 375 | recnd 10106 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (1 / 𝑛) ∈
ℂ) |
377 | 376 | mul01d 10273 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((1 / 𝑛) · 0) =
0) |
378 | 374, 377 | eqtrd 2685 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((1 / 𝑛) · (𝑦↑𝑛)) = 0) |
379 | 357, 359,
364, 378 | ifbothda 4156 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0) |
380 | 379 | sumeq2dv 14477 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → Σ𝑛 ∈ ℕ0
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0
0) |
381 | 1 | eqimssi 3692 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ⊆
(ℤ≥‘0) |
382 | 381 | orci 404 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ⊆ (ℤ≥‘0) ∨
ℕ0 ∈ Fin) |
383 | | sumz 14497 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ⊆ (ℤ≥‘0) ∨
ℕ0 ∈ Fin) → Σ𝑛 ∈ ℕ0 0 =
0) |
384 | 382, 383 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
Σ𝑛 ∈
ℕ0 0 = 0 |
385 | 380, 384 | syl6eq 2701 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → Σ𝑛 ∈ ℕ0
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0) |
386 | 385, 197,
93 | fvmpt 6321 |
. . . . . . . . . 10
⊢ (0 ∈
(0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘0) = 0) |
387 | 343, 386 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘0) = 0) |
388 | 355, 387 | eqtr4d 2688 |
. . . . . . . 8
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘0)) |
389 | 47, 48, 49, 81, 198, 284, 341, 344, 388 | dv11cn 23809 |
. . . . . . 7
⊢ (⊤
→ (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) |
390 | 389 | fveq1d 6231 |
. . . . . 6
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘𝐴)) |
391 | 46, 390 | mp1i 13 |
. . . . 5
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘𝐴)) |
392 | | oveq2 6698 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (1 − 𝑦) = (1 − 𝐴)) |
393 | 392 | fveq2d 6233 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (log‘(1 − 𝑦)) = (log‘(1 − 𝐴))) |
394 | 393 | negeqd 10313 |
. . . . . 6
⊢ (𝑦 = 𝐴 → -(log‘(1 − 𝑦)) = -(log‘(1 −
𝐴))) |
395 | | negex 10317 |
. . . . . 6
⊢
-(log‘(1 − 𝐴)) ∈ V |
396 | 394, 80, 395 | fvmpt 6321 |
. . . . 5
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = -(log‘(1 − 𝐴))) |
397 | | oveq1 6697 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦↑𝑛) = (𝐴↑𝑛)) |
398 | 397 | oveq2d 6706 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
399 | 398 | sumeq2sdv 14479 |
. . . . . 6
⊢ (𝑦 = 𝐴 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
400 | | sumex 14462 |
. . . . . 6
⊢
Σ𝑛 ∈
ℕ0 (if(𝑛 =
0, 0, (1 / 𝑛)) ·
(𝐴↑𝑛)) ∈ V |
401 | 399, 197,
400 | fvmpt 6321 |
. . . . 5
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘𝐴) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
402 | 391, 396,
401 | 3eqtr3d 2693 |
. . . 4
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
403 | 45, 402 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
404 | 26, 403 | breqtrrd 4713 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ⇝ -(log‘(1 − 𝐴))) |
405 | | seqex 12843 |
. . . 4
⊢ seq0( + ,
(𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ∈ V |
406 | 405 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ∈ V) |
407 | | seqex 12843 |
. . . 4
⊢ seq1( + ,
(𝑘 ∈ ℕ ↦
((𝐴↑𝑘) / 𝑘))) ∈ V |
408 | 407 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq1( + , (𝑘 ∈
ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ∈ V) |
409 | | 1zzd 11446 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 1 ∈ ℤ) |
410 | | elnnuz 11762 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
411 | | fvres 6245 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘1) → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛)) |
412 | 410, 411 | sylbi 207 |
. . . . 5
⊢ (𝑛 ∈ ℕ → ((seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛)) |
413 | 412 | eqcomd 2657 |
. . . 4
⊢ (𝑛 ∈ ℕ → (seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛)) |
414 | | addid2 10257 |
. . . . . . . 8
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
415 | 414 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℂ) → (0
+ 𝑛) = 𝑛) |
416 | | 0cnd 10071 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 0 ∈ ℂ) |
417 | | 1eluzge0 11770 |
. . . . . . . 8
⊢ 1 ∈
(ℤ≥‘0) |
418 | 417 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 1 ∈ (ℤ≥‘0)) |
419 | | 0cnd 10071 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) ∧ 𝑘 = 0) → 0 ∈
ℂ) |
420 | | nn0cn 11340 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
421 | 420 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → 𝑘 ∈ ℂ) |
422 | | df-ne 2824 |
. . . . . . . . . . . . 13
⊢ (𝑘 ≠ 0 ↔ ¬ 𝑘 = 0) |
423 | 422 | biimpri 218 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 = 0 → 𝑘 ≠ 0) |
424 | | reccl 10730 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈
ℂ) |
425 | 421, 423,
424 | syl2an 493 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ) |
426 | 419, 425 | ifclda 4153 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ) |
427 | | expcl 12918 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
428 | 427 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
429 | 426, 428 | mulcld 10098 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)) ∈ ℂ) |
430 | 429, 8 | fmptd 6425 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))):ℕ0⟶ℂ) |
431 | | 1nn0 11346 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
432 | | ffvelrn 6397 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, 0, (1 /
𝑘)) · (𝐴↑𝑘))):ℕ0⟶ℂ ∧
1 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘1) ∈ ℂ) |
433 | 430, 431,
432 | sylancl 695 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘1) ∈ ℂ) |
434 | | elfz1eq 12390 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...0) → 𝑛 = 0) |
435 | | 1m1e0 11127 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
436 | 435 | oveq2i 6701 |
. . . . . . . . . 10
⊢ (0...(1
− 1)) = (0...0) |
437 | 434, 436 | eleq2s 2748 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...(1 − 1))
→ 𝑛 =
0) |
438 | 437 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑛 ∈ (0...(1 − 1))
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘0)) |
439 | | 0nn0 11345 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
440 | | iftrue 4125 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → if(𝑘 = 0, 0, (1 / 𝑘)) = 0) |
441 | | oveq2 6698 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (𝐴↑𝑘) = (𝐴↑0)) |
442 | 440, 441 | oveq12d 6708 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)) = (0 · (𝐴↑0))) |
443 | | ovex 6718 |
. . . . . . . . . . 11
⊢ (0
· (𝐴↑0)) ∈
V |
444 | 442, 8, 443 | fvmpt 6321 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘0) = (0 · (𝐴↑0))) |
445 | 439, 444 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, 0, (1 /
𝑘)) · (𝐴↑𝑘)))‘0) = (0 · (𝐴↑0)) |
446 | | expcl 12918 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝐴↑0) ∈ ℂ) |
447 | 27, 439, 446 | sylancl 695 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴↑0) ∈
ℂ) |
448 | 447 | mul02d 10272 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (0 · (𝐴↑0)) = 0) |
449 | 445, 448 | syl5eq 2697 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘0) = 0) |
450 | 438, 449 | sylan9eqr 2707 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ (0...(1 −
1))) → ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = 0) |
451 | 415, 416,
418, 433, 450 | seqid 12886 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1)) = seq1( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))) |
452 | 305 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
𝑛 ≠ 0) |
453 | 452 | neneqd 2828 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
¬ 𝑛 =
0) |
454 | 453 | iffalsed 4130 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛)) |
455 | 454 | oveq1d 6705 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) = ((1 / 𝑛) · (𝐴↑𝑛))) |
456 | 296, 23 | sylan2 490 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(𝐴↑𝑛) ∈ ℂ) |
457 | 311 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
𝑛 ∈
ℂ) |
458 | 456, 457,
452 | divrec2d 10843 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝐴↑𝑛) / 𝑛) = ((1 / 𝑛) · (𝐴↑𝑛))) |
459 | 455, 458 | eqtr4d 2688 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) = ((𝐴↑𝑛) / 𝑛)) |
460 | 296, 11 | sylan2 490 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
461 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
462 | 6, 461 | oveq12d 6708 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → ((𝐴↑𝑘) / 𝑘) = ((𝐴↑𝑛) / 𝑛)) |
463 | | eqid 2651 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)) |
464 | | ovex 6718 |
. . . . . . . . . . 11
⊢ ((𝐴↑𝑛) / 𝑛) ∈ V |
465 | 462, 463,
464 | fvmpt 6321 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))‘𝑛) = ((𝐴↑𝑛) / 𝑛)) |
466 | 465 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝑘 ∈ ℕ ↦
((𝐴↑𝑘) / 𝑘))‘𝑛) = ((𝐴↑𝑛) / 𝑛)) |
467 | 459, 460,
466 | 3eqtr4d 2695 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))‘𝑛)) |
468 | 410, 467 | sylan2br 492 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
(ℤ≥‘1)) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))‘𝑛)) |
469 | 409, 468 | seqfeq 12866 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq1( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))) |
470 | 451, 469 | eqtrd 2685 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))) |
471 | 470 | fveq1d 6231 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ ((seq0( + , (𝑘
∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))‘𝑛)) |
472 | 413, 471 | sylan9eqr 2707 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))‘𝑛)) |
473 | 322, 406,
408, 409, 472 | climeq 14342 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ⇝ -(log‘(1 − 𝐴)) ↔ seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴)))) |
474 | 404, 473 | mpbid 222 |
1
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq1( + , (𝑘 ∈
ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴))) |