MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logreclem Structured version   Visualization version   GIF version

Theorem logreclem 24720
Description: Symmetry of the natural logarithm range by negation. Lemma for logrec 24721. (Contributed by Saveliy Skresanov, 27-Dec-2016.)
Assertion
Ref Expression
logreclem ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)

Proof of Theorem logreclem
StepHypRef Expression
1 logrncn 24529 . . . . . . . . 9 (𝐴 ∈ ran log → 𝐴 ∈ ℂ)
21adantr 472 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → 𝐴 ∈ ℂ)
32negcld 10591 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ℂ)
4 ellogrn 24526 . . . . . . . . . . . . . 14 (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
54biimpi 206 . . . . . . . . . . . . 13 (𝐴 ∈ ran log → (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
65simp3d 1139 . . . . . . . . . . . 12 (𝐴 ∈ ran log → (ℑ‘𝐴) ≤ π)
7 imcl 14070 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
8 pire 24430 . . . . . . . . . . . . 13 π ∈ ℝ
9 leneg 10743 . . . . . . . . . . . . . 14 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π ↔ -π ≤ -(ℑ‘𝐴)))
109biimpd 219 . . . . . . . . . . . . 13 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
117, 8, 10sylancl 697 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
121, 6, 11sylc 65 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π ≤ -(ℑ‘𝐴))
138renegcli 10554 . . . . . . . . . . . . . 14 -π ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -π ∈ ℝ)
157renegcld 10669 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
1614, 15leloed 10392 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) ↔ (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
1716biimpd 219 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
181, 12, 17sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴)))
1918orcomd 402 . . . . . . . . 9 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -π < -(ℑ‘𝐴)))
2019orcanai 990 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -π < -(ℑ‘𝐴))
215simp2d 1138 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π < (ℑ‘𝐴))
22 ltnegcon1 10741 . . . . . . . . . . . . 13 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) ↔ -(ℑ‘𝐴) < π))
2322biimpd 219 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
248, 7, 23sylancr 698 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
251, 21, 24sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → -(ℑ‘𝐴) < π)
2625adantr 472 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) < π)
27 ltle 10338 . . . . . . . . . . . 12 ((-(ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
2815, 8, 27sylancl 697 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
291, 28syl 17 . . . . . . . . . 10 (𝐴 ∈ ran log → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3029adantr 472 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3126, 30mpd 15 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ π)
32 imneg 14092 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
3332breq2d 4816 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
342, 33syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
3532breq1d 4814 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
362, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
3734, 36anbi12d 749 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-π < -(ℑ‘𝐴) ∧ -(ℑ‘𝐴) ≤ π)))
3820, 31, 37mpbir2and 995 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
39 3anass 1081 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-𝐴 ∈ ℂ ∧ (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π)))
403, 38, 39sylanbrc 701 . . . . . 6 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
41 ellogrn 24526 . . . . . 6 (-𝐴 ∈ ran log ↔ (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
4240, 41sylibr 224 . . . . 5 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ran log)
4342ex 449 . . . 4 (𝐴 ∈ ran log → (¬ -π = -(ℑ‘𝐴) → -𝐴 ∈ ran log))
4443orrd 392 . . 3 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log))
45 recn 10238 . . . . . . . 8 (π ∈ ℝ → π ∈ ℂ)
46 recn 10238 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → (ℑ‘𝐴) ∈ ℂ)
4745, 46anim12i 591 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
488, 7, 47sylancr 698 . . . . . 6 (𝐴 ∈ ℂ → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
491, 48syl 17 . . . . 5 (𝐴 ∈ ran log → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
50 neg11 10544 . . . . . 6 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ π = (ℑ‘𝐴)))
51 eqcom 2767 . . . . . 6 (π = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = π)
5250, 51syl6bb 276 . . . . 5 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5349, 52syl 17 . . . 4 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5453orbi1d 741 . . 3 (𝐴 ∈ ran log → ((-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log) ↔ ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log)))
5544, 54mpbid 222 . 2 (𝐴 ∈ ran log → ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log))
5655orcanai 990 1 ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  ran crn 5267  cfv 6049  cc 10146  cr 10147   < clt 10286  cle 10287  -cneg 10479  cim 14057  πcpi 15016  logclog 24521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523
This theorem is referenced by:  logrec  24721
  Copyright terms: Public domain W3C validator