![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logltb | Structured version Visualization version GIF version |
Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
logltb | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogiso 24565 | . . . . 5 ⊢ (log ↾ ℝ+) Isom < , < (ℝ+, ℝ) | |
2 | df-isom 6059 | . . . . 5 ⊢ ((log ↾ ℝ+) Isom < , < (ℝ+, ℝ) ↔ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)))) | |
3 | 1, 2 | mpbi 220 | . . . 4 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦))) |
4 | 3 | simpri 481 | . . 3 ⊢ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) |
5 | breq1 4808 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 < 𝑦 ↔ 𝐴 < 𝑦)) | |
6 | fveq2 6354 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((log ↾ ℝ+)‘𝑥) = ((log ↾ ℝ+)‘𝐴)) | |
7 | 6 | breq1d 4815 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦))) |
8 | 5, 7 | bibi12d 334 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)))) |
9 | breq2 4809 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 < 𝑦 ↔ 𝐴 < 𝐵)) | |
10 | fveq2 6354 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((log ↾ ℝ+)‘𝑦) = ((log ↾ ℝ+)‘𝐵)) | |
11 | 10 | breq2d 4817 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))) |
12 | 9, 11 | bibi12d 334 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))) |
13 | 8, 12 | rspc2v 3462 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))) |
14 | 4, 13 | mpi 20 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))) |
15 | fvres 6370 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴)) | |
16 | fvres 6370 | . . 3 ⊢ (𝐵 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐵) = (log‘𝐵)) | |
17 | 15, 16 | breqan12d 4821 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵) ↔ (log‘𝐴) < (log‘𝐵))) |
18 | 14, 17 | bitrd 268 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∀wral 3051 class class class wbr 4805 ↾ cres 5269 –1-1-onto→wf1o 6049 ‘cfv 6050 Isom wiso 6051 ℝcr 10148 < clt 10287 ℝ+crp 12046 logclog 24522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-fi 8485 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-q 12003 df-rp 12047 df-xneg 12160 df-xadd 12161 df-xmul 12162 df-ioo 12393 df-ioc 12394 df-ico 12395 df-icc 12396 df-fz 12541 df-fzo 12681 df-fl 12808 df-mod 12884 df-seq 13017 df-exp 13076 df-fac 13276 df-bc 13305 df-hash 13333 df-shft 14027 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-limsup 14422 df-clim 14439 df-rlim 14440 df-sum 14637 df-ef 15018 df-sin 15020 df-cos 15021 df-pi 15023 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-hom 16189 df-cco 16190 df-rest 16306 df-topn 16307 df-0g 16325 df-gsum 16326 df-topgen 16327 df-pt 16328 df-prds 16331 df-xrs 16385 df-qtop 16390 df-imas 16391 df-xps 16393 df-mre 16469 df-mrc 16470 df-acs 16472 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-submnd 17558 df-mulg 17763 df-cntz 17971 df-cmn 18416 df-psmet 19961 df-xmet 19962 df-met 19963 df-bl 19964 df-mopn 19965 df-fbas 19966 df-fg 19967 df-cnfld 19970 df-top 20922 df-topon 20939 df-topsp 20960 df-bases 20973 df-cld 21046 df-ntr 21047 df-cls 21048 df-nei 21125 df-lp 21163 df-perf 21164 df-cn 21254 df-cnp 21255 df-haus 21342 df-tx 21588 df-hmeo 21781 df-fil 21872 df-fm 21964 df-flim 21965 df-flf 21966 df-xms 22347 df-ms 22348 df-tms 22349 df-cncf 22903 df-limc 23850 df-dv 23851 df-log 24524 |
This theorem is referenced by: logleb 24570 rplogcl 24571 loggt0b 24599 loglt1b 24601 logblt 24743 cxploglim2 24926 emcllem4 24946 chtub 25158 chpub 25166 chebbnd1lem1 25379 chebbnd1lem2 25380 chebbnd1 25382 pntlemb 25507 pntlemh 25509 ostth3 25548 xrge0iifiso 30312 hgt750lem 31060 reglogltb 37976 reglogleb 37977 regt1loggt0 42859 logblt1b 42887 |
Copyright terms: Public domain | W3C validator |