MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacrlim Structured version   Visualization version   GIF version

Theorem logfacrlim 25144
Description: Combine the estimates logfacubnd 25141 and logfaclbnd 25142, to get log(𝑥!) = 𝑥log𝑥 + 𝑂(𝑥). Equation 9.2.9 of [Shapiro], p. 329. This is a weak form of the even stronger statement, log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥). (Contributed by Mario Carneiro, 16-Apr-2016.) (Revised by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
logfacrlim (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1

Proof of Theorem logfacrlim
StepHypRef Expression
1 1red 10243 . . 3 (⊤ → 1 ∈ ℝ)
2 1cnd 10244 . . 3 (⊤ → 1 ∈ ℂ)
3 relogcl 24517 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 473 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
54recnd 10256 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
6 1cnd 10244 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 rpcnne0 12039 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
87adantl 473 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
9 divdir 10898 . . . . . . 7 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
105, 6, 8, 9syl3anc 1477 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
1110mpteq2dva 4892 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))))
12 simpr 479 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
134, 12rerpdivcld 12092 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
14 rpreccl 12046 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1514adantl 473 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
1615rpred 12061 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
178simpld 477 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
1817cxp1d 24647 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
1918oveq2d 6825 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / (𝑥𝑐1)) = ((log‘𝑥) / 𝑥))
2019mpteq2dva 4892 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)))
21 1rp 12025 . . . . . . . 8 1 ∈ ℝ+
22 cxploglim 24899 . . . . . . . 8 (1 ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2321, 22mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2420, 23eqbrtrrd 4824 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) ⇝𝑟 0)
25 ax-1cn 10182 . . . . . . 7 1 ∈ ℂ
26 divrcnv 14779 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2725, 26mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2813, 16, 24, 27rlimadd 14568 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))) ⇝𝑟 (0 + 0))
2911, 28eqbrtrd 4822 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 (0 + 0))
30 00id 10399 . . . 4 (0 + 0) = 0
3129, 30syl6breq 4841 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 0)
32 peano2re 10397 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) + 1) ∈ ℝ)
334, 32syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) + 1) ∈ ℝ)
3433, 12rerpdivcld 12092 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ)
3534recnd 10256 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
36 rprege0 12036 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
3736adantl 473 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
38 flge0nn0 12811 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
39 faccl 13260 . . . . . . . . 9 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
4037, 38, 393syl 18 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℕ)
4140nnrpd 12059 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℝ+)
42 relogcl 24517 . . . . . . 7 ((!‘(⌊‘𝑥)) ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4341, 42syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4443, 12rerpdivcld 12092 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
4544recnd 10256 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
465, 45subcld 10580 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
47 logfacbnd3 25143 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4847adantl 473 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4943recnd 10256 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
5049adantrr 755 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
517ad2antrl 766 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5251simpld 477 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
535adantrr 755 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
54 subcl 10468 . . . . . . . . . 10 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑥) − 1) ∈ ℂ)
5553, 25, 54sylancl 697 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) − 1) ∈ ℂ)
5652, 55mulcld 10248 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℂ)
5750, 56subcld 10580 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1))) ∈ ℂ)
5857abscld 14370 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ)
594adantrr 755 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
6059, 32syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ)
61 rpregt0 12035 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6261ad2antrl 766 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 lediv1 11076 . . . . . 6 (((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ ∧ ((log‘𝑥) + 1) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6458, 60, 62, 63syl3anc 1477 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6548, 64mpbid 222 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥))
6651simprd 482 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0)
6755, 52, 66divcan3d 10994 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) / 𝑥) = ((log‘𝑥) − 1))
6867oveq1d 6824 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
69 divsubdir 10909 . . . . . . . 8 (((𝑥 · ((log‘𝑥) − 1)) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7056, 50, 51, 69syl3anc 1477 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7145adantrr 755 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
72 1cnd 10244 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
7353, 71, 72sub32d 10612 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7468, 70, 733eqtr4rd 2801 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
7574fveq2d 6352 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
7656, 50subcld 10580 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) ∈ ℂ)
7776, 52, 66absdivd 14389 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)))
7856, 50abssubd 14387 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) = (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))))
7936ad2antrl 766 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
80 absid 14231 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
8179, 80syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥)
8278, 81oveq12d 6827 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8375, 77, 823eqtrd 2794 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8435adantrr 755 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
8584subid1d 10569 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥) + 1) / 𝑥) − 0) = (((log‘𝑥) + 1) / 𝑥))
8685fveq2d 6352 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (abs‘(((log‘𝑥) + 1) / 𝑥)))
87 log1 24527 . . . . . . . . 9 (log‘1) = 0
88 simprr 813 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
8912adantrr 755 . . . . . . . . . . 11 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
90 logleb 24544 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9121, 89, 90sylancr 698 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9288, 91mpbid 222 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
9387, 92syl5eqbrr 4836 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
9459, 93ge0p1rpd 12091 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ+)
9594, 89rpdivcld 12078 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ+)
96 rprege0 12036 . . . . . 6 ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ+ → ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)))
97 absid 14231 . . . . . 6 (((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9895, 96, 973syl 18 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9986, 98eqtrd 2790 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (((log‘𝑥) + 1) / 𝑥))
10065, 83, 993brtr4d 4832 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) ≤ (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)))
1011, 2, 31, 35, 46, 100rlimsqzlem 14574 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1)
102101trud 1638 1 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1628  wtru 1629  wcel 2135  wne 2928   class class class wbr 4800  cmpt 4877  cfv 6045  (class class class)co 6809  cc 10122  cr 10123  0cc0 10124  1c1 10125   + caddc 10127   · cmul 10129   < clt 10262  cle 10263  cmin 10454   / cdiv 10872  cn 11208  0cn0 11480  +crp 12021  cfl 12781  !cfa 13250  abscabs 14169  𝑟 crli 14411  logclog 24496  𝑐ccxp 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-of 7058  df-om 7227  df-1st 7329  df-2nd 7330  df-supp 7460  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-oadd 7729  df-er 7907  df-map 8021  df-pm 8022  df-ixp 8071  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fsupp 8437  df-fi 8478  df-sup 8509  df-inf 8510  df-oi 8576  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-q 11978  df-rp 12022  df-xneg 12135  df-xadd 12136  df-xmul 12137  df-ioo 12368  df-ioc 12369  df-ico 12370  df-icc 12371  df-fz 12516  df-fzo 12656  df-fl 12783  df-mod 12859  df-seq 12992  df-exp 13051  df-fac 13251  df-bc 13280  df-hash 13308  df-shft 14002  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-limsup 14397  df-clim 14414  df-rlim 14415  df-sum 14612  df-ef 14993  df-sin 14995  df-cos 14996  df-pi 14998  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-mulr 16153  df-starv 16154  df-sca 16155  df-vsca 16156  df-ip 16157  df-tset 16158  df-ple 16159  df-ds 16162  df-unif 16163  df-hom 16164  df-cco 16165  df-rest 16281  df-topn 16282  df-0g 16300  df-gsum 16301  df-topgen 16302  df-pt 16303  df-prds 16306  df-xrs 16360  df-qtop 16365  df-imas 16366  df-xps 16368  df-mre 16444  df-mrc 16445  df-acs 16447  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-submnd 17533  df-mulg 17738  df-cntz 17946  df-cmn 18391  df-psmet 19936  df-xmet 19937  df-met 19938  df-bl 19939  df-mopn 19940  df-fbas 19941  df-fg 19942  df-cnfld 19945  df-top 20897  df-topon 20914  df-topsp 20935  df-bases 20948  df-cld 21021  df-ntr 21022  df-cls 21023  df-nei 21100  df-lp 21138  df-perf 21139  df-cn 21229  df-cnp 21230  df-haus 21317  df-cmp 21388  df-tx 21563  df-hmeo 21756  df-fil 21847  df-fm 21939  df-flim 21940  df-flf 21941  df-xms 22322  df-ms 22323  df-tms 22324  df-cncf 22878  df-limc 23825  df-dv 23826  df-log 24498  df-cxp 24499
This theorem is referenced by:  vmadivsum  25366
  Copyright terms: Public domain W3C validator