MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfaclbnd Structured version   Visualization version   GIF version

Theorem logfaclbnd 25168
Description: A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfaclbnd (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) ≤ (log‘(!‘(⌊‘𝐴))))

Proof of Theorem logfaclbnd
Dummy variables 𝑑 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 12044 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
21times2d 11478 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 · 2) = (𝐴 + 𝐴))
32oveq2d 6809 . . 3 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − (𝐴 · 2)) = ((𝐴 · (log‘𝐴)) − (𝐴 + 𝐴)))
4 relogcl 24543 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
54recnd 10270 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
6 2cnd 11295 . . . 4 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
71, 5, 6subdid 10688 . . 3 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) = ((𝐴 · (log‘𝐴)) − (𝐴 · 2)))
8 rpre 12042 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
98, 4remulcld 10272 . . . . 5 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ∈ ℝ)
109recnd 10270 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ∈ ℂ)
1110, 1, 1subsub4d 10625 . . 3 (𝐴 ∈ ℝ+ → (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) = ((𝐴 · (log‘𝐴)) − (𝐴 + 𝐴)))
123, 7, 113eqtr4d 2815 . 2 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) = (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴))
139, 8resubcld 10660 . . . 4 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ∈ ℝ)
14 fzfid 12980 . . . . 5 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
15 fzfid 12980 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
16 elfznn 12577 . . . . . . . 8 (𝑑 ∈ (1...𝑛) → 𝑑 ∈ ℕ)
1716adantl 467 . . . . . . 7 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → 𝑑 ∈ ℕ)
1817nnrecred 11268 . . . . . 6 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → (1 / 𝑑) ∈ ℝ)
1915, 18fsumrecl 14673 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ∈ ℝ)
2014, 19fsumrecl 14673 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ∈ ℝ)
21 rprege0 12050 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
22 flge0nn0 12829 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2321, 22syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
24 faccl 13274 . . . . . . . 8 ((⌊‘𝐴) ∈ ℕ0 → (!‘(⌊‘𝐴)) ∈ ℕ)
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → (!‘(⌊‘𝐴)) ∈ ℕ)
2625nnrpd 12073 . . . . . 6 (𝐴 ∈ ℝ+ → (!‘(⌊‘𝐴)) ∈ ℝ+)
2726relogcld 24590 . . . . 5 (𝐴 ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
2827, 8readdcld 10271 . . . 4 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + 𝐴) ∈ ℝ)
29 elfznn 12577 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
3029adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
3130nnrecred 11268 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ)
3214, 31fsumrecl 14673 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ)
338, 32remulcld 10272 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) ∈ ℝ)
34 reflcl 12805 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
358, 34syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
3633, 35resubcld 10660 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) ∈ ℝ)
37 harmoniclbnd 24956 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))
38 rpregt0 12049 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
39 lemul2 11078 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ↔ (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))))
404, 32, 38, 39syl3anc 1476 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ↔ (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))))
4137, 40mpbid 222 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)))
42 flle 12808 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
438, 42syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
449, 35, 33, 8, 41, 43le2subd 10849 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)))
4529nnrecred 11268 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝐴)) → (1 / 𝑑) ∈ ℝ)
46 remulcl 10223 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (1 / 𝑑) ∈ ℝ) → (𝐴 · (1 / 𝑑)) ∈ ℝ)
478, 45, 46syl2an 583 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 · (1 / 𝑑)) ∈ ℝ)
48 peano2rem 10550 . . . . . . . 8 ((𝐴 · (1 / 𝑑)) ∈ ℝ → ((𝐴 · (1 / 𝑑)) − 1) ∈ ℝ)
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) ∈ ℝ)
50 fzfid 12980 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝑑...(⌊‘𝐴)) ∈ Fin)
5131adantr 466 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ)
5250, 51fsumrecl 14673 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ)
538adantr 466 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
5453, 34syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ ℝ)
55 peano2re 10411 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
5654, 55syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((⌊‘𝐴) + 1) ∈ ℝ)
5730nnred 11237 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ)
58 fllep1 12810 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
598, 58syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
6059adantr 466 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ≤ ((⌊‘𝐴) + 1))
6153, 56, 57, 60lesub1dd 10845 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴𝑑) ≤ (((⌊‘𝐴) + 1) − 𝑑))
6253, 57resubcld 10660 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴𝑑) ∈ ℝ)
6356, 57resubcld 10660 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (((⌊‘𝐴) + 1) − 𝑑) ∈ ℝ)
6430nnrpd 12073 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
6564rpreccld 12085 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ+)
6662, 63, 65lemul1d 12118 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) ≤ (((⌊‘𝐴) + 1) − 𝑑) ↔ ((𝐴𝑑) · (1 / 𝑑)) ≤ ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑))))
6761, 66mpbid 222 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) · (1 / 𝑑)) ≤ ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
681adantr 466 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℂ)
6930nncnd 11238 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℂ)
7031recnd 10270 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℂ)
7168, 69, 70subdird 10689 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) · (1 / 𝑑)) = ((𝐴 · (1 / 𝑑)) − (𝑑 · (1 / 𝑑))))
7230nnne0d 11267 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ≠ 0)
7369, 72recidd 10998 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝑑 · (1 / 𝑑)) = 1)
7473oveq2d 6809 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − (𝑑 · (1 / 𝑑))) = ((𝐴 · (1 / 𝑑)) − 1))
7571, 74eqtr2d 2806 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) = ((𝐴𝑑) · (1 / 𝑑)))
76 fsumconst 14729 . . . . . . . . . 10 (((𝑑...(⌊‘𝐴)) ∈ Fin ∧ (1 / 𝑑) ∈ ℂ) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((♯‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)))
7750, 70, 76syl2anc 573 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((♯‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)))
78 elfzuz3 12546 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ𝑑))
7978adantl 467 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ (ℤ𝑑))
80 hashfz 13416 . . . . . . . . . . . 12 ((⌊‘𝐴) ∈ (ℤ𝑑) → (♯‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) − 𝑑) + 1))
8179, 80syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (♯‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) − 𝑑) + 1))
8235recnd 10270 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
8382adantr 466 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ ℂ)
84 1cnd 10258 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℂ)
8583, 84, 69addsubd 10615 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (((⌊‘𝐴) + 1) − 𝑑) = (((⌊‘𝐴) − 𝑑) + 1))
8681, 85eqtr4d 2808 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (♯‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) + 1) − 𝑑))
8786oveq1d 6808 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((♯‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)) = ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
8877, 87eqtrd 2805 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
8967, 75, 883brtr4d 4818 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) ≤ Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
9014, 49, 52, 89fsumle 14738 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
9114, 1, 70fsummulc2 14723 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)))
92 ax-1cn 10196 . . . . . . . . . 10 1 ∈ ℂ
93 fsumconst 14729 . . . . . . . . . 10 (((1...(⌊‘𝐴)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑑 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
9414, 92, 93sylancl 574 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
95 hashfz1 13338 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ ℕ0 → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
9623, 95syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
9796oveq1d 6808 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((♯‘(1...(⌊‘𝐴))) · 1) = ((⌊‘𝐴) · 1))
9882mulid1d 10259 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) · 1) = (⌊‘𝐴))
9994, 97, 983eqtrrd 2810 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))1)
10091, 99oveq12d 6811 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)) − Σ𝑑 ∈ (1...(⌊‘𝐴))1))
10147recnd 10270 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 · (1 / 𝑑)) ∈ ℂ)
10214, 101, 84fsumsub 14727 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)) − Σ𝑑 ∈ (1...(⌊‘𝐴))1))
103100, 102eqtr4d 2808 . . . . . 6 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1))
104 eqid 2771 . . . . . . . . . . . . . 14 (ℤ‘1) = (ℤ‘1)
105104uztrn2 11906 . . . . . . . . . . . . 13 ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) → 𝑛 ∈ (ℤ‘1))
106105adantl 467 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → 𝑛 ∈ (ℤ‘1))
107106biantrurd 522 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) ↔ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
108 uzss 11909 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑑) → (ℤ𝑛) ⊆ (ℤ𝑑))
109108ad2antll 708 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → (ℤ𝑛) ⊆ (ℤ𝑑))
110109sseld 3751 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) → (⌊‘𝐴) ∈ (ℤ𝑑)))
111110pm4.71rd 552 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) ↔ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
112107, 111bitr3d 270 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ↔ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
113112pm5.32da 568 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))))
114 ancom 452 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
115 an4 635 . . . . . . . . 9 (((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
116113, 114, 1153bitr4g 303 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))))
117 elfzuzb 12543 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))
118 elfzuzb 12543 . . . . . . . . 9 (𝑑 ∈ (1...𝑛) ↔ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)))
119117, 118anbi12i 612 . . . . . . . 8 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛)) ↔ ((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))))
120 elfzuzb 12543 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)))
121 elfzuzb 12543 . . . . . . . . 9 (𝑛 ∈ (𝑑...(⌊‘𝐴)) ↔ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))
122120, 121anbi12i 612 . . . . . . . 8 ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
123116, 119, 1223bitr4g 303 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴)))))
12418recnd 10270 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → (1 / 𝑑) ∈ ℂ)
125124anasss 457 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛))) → (1 / 𝑑) ∈ ℂ)
12614, 14, 15, 123, 125fsumcom2 14713 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
12790, 103, 1263brtr4d 4818 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
12813, 36, 20, 44, 127letrd 10396 . . . 4 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
12927, 35readdcld 10271 . . . . 5 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) ∈ ℝ)
130 elfznn 12577 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
131130adantl 467 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
132131nnrpd 12073 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
133132relogcld 24590 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
134 peano2re 10411 . . . . . . . 8 ((log‘𝑛) ∈ ℝ → ((log‘𝑛) + 1) ∈ ℝ)
135133, 134syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → ((log‘𝑛) + 1) ∈ ℝ)
136 nnz 11601 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
137 flid 12817 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (⌊‘𝑛) = 𝑛)
138136, 137syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (⌊‘𝑛) = 𝑛)
139138oveq2d 6809 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1...(⌊‘𝑛)) = (1...𝑛))
140139sumeq1d 14639 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) = Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
141 nnre 11229 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
142 nnge1 11248 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
143 harmonicubnd 24957 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 1 ≤ 𝑛) → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) ≤ ((log‘𝑛) + 1))
144141, 142, 143syl2anc 573 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) ≤ ((log‘𝑛) + 1))
145140, 144eqbrtrrd 4810 . . . . . . . 8 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘𝑛) + 1))
146131, 145syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘𝑛) + 1))
14714, 19, 135, 146fsumle 14738 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1))
148133recnd 10270 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℂ)
149 1cnd 10258 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℂ)
15014, 148, 149fsumadd 14678 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) + Σ𝑛 ∈ (1...(⌊‘𝐴))1))
151 logfac 24568 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
15223, 151syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
153 fsumconst 14729 . . . . . . . . . 10 (((1...(⌊‘𝐴)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
15414, 92, 153sylancl 574 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
155154, 97, 983eqtrrd 2810 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))1)
156152, 155oveq12d 6811 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) + Σ𝑛 ∈ (1...(⌊‘𝐴))1))
157150, 156eqtr4d 2808 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1) = ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)))
158147, 157breqtrd 4812 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)))
15935, 8, 27, 43leadd2dd 10844 . . . . 5 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16020, 129, 28, 158, 159letrd 10396 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16113, 20, 28, 128, 160letrd 10396 . . 3 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16213, 8, 27lesubaddd 10826 . . 3 (𝐴 ∈ ℝ+ → ((((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) ≤ (log‘(!‘(⌊‘𝐴))) ↔ ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴)))
163161, 162mpbird 247 . 2 (𝐴 ∈ ℝ+ → (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) ≤ (log‘(!‘(⌊‘𝐴))))
16412, 163eqbrtrd 4808 1 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) ≤ (log‘(!‘(⌊‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wss 3723   class class class wbr 4786  cfv 6031  (class class class)co 6793  Fincfn 8109  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  cz 11579  cuz 11888  +crp 12035  ...cfz 12533  cfl 12799  !cfa 13264  chash 13321  Σcsu 14624  logclog 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-e 15005  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-em 24940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator