MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfac2 Structured version   Visualization version   GIF version

Theorem logfac2 24987
Description: Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Assertion
Ref Expression
logfac2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem logfac2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flge0nn0 12661 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2 logfac 24392 . . 3 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
31, 2syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4 fzfid 12812 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
5 fzfid 12812 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ∈ Fin)
6 ssrab2 3720 . . . . 5 {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))
7 ssfi 8221 . . . . 5 (((1...(⌊‘𝐴)) ∈ Fin ∧ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
85, 6, 7sylancl 695 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
9 flcl 12636 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ)
11 fznn 12446 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1312anbi1d 741 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
14 nnre 11065 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1514ad2antlr 763 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℝ)
16 elfznn 12408 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
1716ad2antrl 764 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℕ)
1817nnred 11073 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℝ)
19 reflcl 12637 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
2019ad3antrrr 766 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (⌊‘𝐴) ∈ ℝ)
21 simprr 811 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
22 nnz 11437 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2322ad2antlr 763 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℤ)
24 dvdsle 15079 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑘𝑛𝑘𝑛))
2523, 17, 24syl2anc 694 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (𝑘𝑛𝑘𝑛))
2621, 25mpd 15 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
27 elfzle2 12383 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ≤ (⌊‘𝐴))
2827ad2antrl 764 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ≤ (⌊‘𝐴))
2915, 18, 20, 26, 28letrd 10232 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴))
3029expl 647 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴)))
3130pm4.71rd 668 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))))
32 an12 855 . . . . . . 7 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
33 anass 682 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ∈ ℕ ∧ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
34 an12 855 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3533, 34bitri 264 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3631, 32, 353bitr4g 303 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3713, 36bitr4d 271 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛))))
38 breq2 4689 . . . . . . 7 (𝑥 = 𝑛 → (𝑘𝑥𝑘𝑛))
3938elrab 3396 . . . . . 6 (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))
4039anbi2i 730 . . . . 5 ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
41 breq1 4688 . . . . . . 7 (𝑥 = 𝑘 → (𝑥𝑛𝑘𝑛))
4241elrab 3396 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑛))
4342anbi2i 730 . . . . 5 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)))
4437, 40, 433bitr4g 303 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})))
45 elfznn 12408 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝐴)) → 𝑘 ∈ ℕ)
4645adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝑘 ∈ ℕ)
47 vmacl 24889 . . . . . . 7 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
4846, 47syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℝ)
4948recnd 10106 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℂ)
5049adantrr 753 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})) → (Λ‘𝑘) ∈ ℂ)
514, 4, 8, 44, 50fsumcom2 14549 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘))
52 fsumconst 14566 . . . . . 6 (({𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin ∧ (Λ‘𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
538, 49, 52syl2anc 694 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
54 fzfid 12812 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑘))) ∈ Fin)
55 simpll 805 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
56 eqid 2651 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)) = (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚))
5755, 46, 56dvdsflf1o 24958 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)):(1...(⌊‘(𝐴 / 𝑘)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
58 f1oeng 8016 . . . . . . . . 9 (((1...(⌊‘(𝐴 / 𝑘))) ∈ Fin ∧ (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)):(1...(⌊‘(𝐴 / 𝑘)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) → (1...(⌊‘(𝐴 / 𝑘))) ≈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
5954, 57, 58syl2anc 694 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑘))) ≈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
60 hasheni 13176 . . . . . . . 8 ((1...(⌊‘(𝐴 / 𝑘))) ≈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}))
6159, 60syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}))
62 simpl 472 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
63 nndivre 11094 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ)
6462, 45, 63syl2an 493 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑘) ∈ ℝ)
65 nngt0 11087 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 < 𝑘)
6614, 65jca 553 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
6745, 66syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝐴)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
68 divge0 10930 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ (𝐴 / 𝑘))
6967, 68sylan2 490 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ≤ (𝐴 / 𝑘))
70 flge0nn0 12661 . . . . . . . . 9 (((𝐴 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑘)) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
7164, 69, 70syl2anc 694 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
72 hashfz1 13174 . . . . . . . 8 ((⌊‘(𝐴 / 𝑘)) ∈ ℕ0 → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
7371, 72syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
7461, 73eqtr3d 2687 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) = (⌊‘(𝐴 / 𝑘)))
7574oveq1d 6705 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)) = ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)))
7664flcld 12639 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℤ)
7776zcnd 11521 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℂ)
7877, 49mulcomd 10099 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7953, 75, 783eqtrd 2689 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
8079sumeq2dv 14477 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
8116adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
82 vmasum 24986 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
8381, 82syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
8483sumeq2dv 14477 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
8551, 80, 843eqtr3d 2693 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
863, 85eqtr4d 2688 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  {crab 2945  wss 3607   class class class wbr 4685  cmpt 4762  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cen 7994  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  ...cfz 12364  cfl 12631  !cfa 13100  #chash 13157  Σcsu 14460  cdvds 15027  logclog 24346  Λcvma 24863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-vma 24869
This theorem is referenced by:  vmadivsum  25216
  Copyright terms: Public domain W3C validator