![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logdmn0 | Structured version Visualization version GIF version |
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
logdmn0 | ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nrp 11903 | . . . 4 ⊢ ¬ 0 ∈ ℝ+ | |
2 | 0re 10078 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | logcn.d | . . . . . . 7 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
4 | 3 | ellogdm 24430 | . . . . . 6 ⊢ (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+))) |
5 | 4 | simprbi 479 | . . . . 5 ⊢ (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+)) |
6 | 2, 5 | mpi 20 | . . . 4 ⊢ (0 ∈ 𝐷 → 0 ∈ ℝ+) |
7 | 1, 6 | mto 188 | . . 3 ⊢ ¬ 0 ∈ 𝐷 |
8 | eleq1 2718 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐷 ↔ 0 ∈ 𝐷)) | |
9 | 7, 8 | mtbiri 316 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐷) |
10 | 9 | necon2ai 2852 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∖ cdif 3604 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 -∞cmnf 10110 ℝ+crp 11870 (,]cioc 12214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-rp 11871 df-ioc 12218 |
This theorem is referenced by: logdmss 24433 logcnlem2 24434 logcnlem3 24435 logcnlem4 24436 logcnlem5 24437 logcn 24438 dvloglem 24439 logf1o2 24441 logtayl 24451 logtayl2 24453 dvcncxp1 24529 dvcnsqrt 24530 cxpcn 24531 atansssdm 24705 lgamgulmlem2 24801 |
Copyright terms: Public domain | W3C validator |