MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivlti Structured version   Visualization version   GIF version

Theorem logdivlti 24486
Description: The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1206 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simpl3 1208 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ 𝐴)
3 simpr 479 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4 simpl1 1204 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
5 ere 14939 . . . . . . . . . . . 12 e ∈ ℝ
6 lelttr 10241 . . . . . . . . . . . 12 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
75, 6mp3an1 1524 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
84, 1, 7syl2anc 696 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((e ≤ 𝐴𝐴 < 𝐵) → e < 𝐵))
92, 3, 8mp2and 717 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e < 𝐵)
10 epos 15055 . . . . . . . . . 10 0 < e
11 0re 10153 . . . . . . . . . . . 12 0 ∈ ℝ
12 lttr 10227 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
1311, 5, 12mp3an12 1527 . . . . . . . . . . 11 (𝐵 ∈ ℝ → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
141, 13syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e < 𝐵) → 0 < 𝐵))
1510, 14mpani 714 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e < 𝐵 → 0 < 𝐵))
169, 15mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐵)
171, 16elrpd 11983 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ+)
18 ltletr 10242 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
1911, 5, 18mp3an12 1527 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
204, 19syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴))
2110, 20mpani 714 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (e ≤ 𝐴 → 0 < 𝐴))
222, 21mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < 𝐴)
234, 22elrpd 11983 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ+)
2417, 23rpdivcld 12003 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ+)
25 relogcl 24442 . . . . . 6 ((𝐵 / 𝐴) ∈ ℝ+ → (log‘(𝐵 / 𝐴)) ∈ ℝ)
2624, 25syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) ∈ ℝ)
271, 23rerpdivcld 12017 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℝ)
28 1re 10152 . . . . . 6 1 ∈ ℝ
29 resubcl 10458 . . . . . 6 (((𝐵 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
3027, 28, 29sylancl 697 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ)
31 relogcl 24442 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
3223, 31syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℝ)
3330, 32remulcld 10183 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) ∈ ℝ)
34 reeflog 24447 . . . . . . . . 9 ((𝐵 / 𝐴) ∈ ℝ+ → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
3524, 34syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (𝐵 / 𝐴))
36 ax-1cn 10107 . . . . . . . . 9 1 ∈ ℂ
3727recnd 10181 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 / 𝐴) ∈ ℂ)
38 pncan3 10402 . . . . . . . . 9 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
3936, 37, 38sylancr 698 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) = (𝐵 / 𝐴))
4035, 39eqtr4d 2761 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) = (1 + ((𝐵 / 𝐴) − 1)))
414recnd 10181 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
4241mulid2d 10171 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) = 𝐴)
4342, 3eqbrtrd 4782 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · 𝐴) < 𝐵)
44 1red 10168 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
45 ltmuldiv 11009 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4644, 1, 4, 22, 45syl112anc 1443 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
4743, 46mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 < (𝐵 / 𝐴))
48 difrp 11982 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
4928, 27, 48sylancr 698 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ ((𝐵 / 𝐴) − 1) ∈ ℝ+))
5047, 49mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℝ+)
51 efgt1p 14965 . . . . . . . 8 (((𝐵 / 𝐴) − 1) ∈ ℝ+ → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
5250, 51syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 + ((𝐵 / 𝐴) − 1)) < (exp‘((𝐵 / 𝐴) − 1)))
5340, 52eqbrtrd 4782 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1)))
54 eflt 14967 . . . . . . 7 (((log‘(𝐵 / 𝐴)) ∈ ℝ ∧ ((𝐵 / 𝐴) − 1) ∈ ℝ) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5526, 30, 54syl2anc 696 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1) ↔ (exp‘(log‘(𝐵 / 𝐴))) < (exp‘((𝐵 / 𝐴) − 1))))
5653, 55mpbird 247 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < ((𝐵 / 𝐴) − 1))
5730recnd 10181 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ∈ ℂ)
5857mulid1d 10170 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) = ((𝐵 / 𝐴) − 1))
59 df-e 14919 . . . . . . . . 9 e = (exp‘1)
60 reeflog 24447 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
6123, 60syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘(log‘𝐴)) = 𝐴)
622, 61breqtrrd 4788 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → e ≤ (exp‘(log‘𝐴)))
6359, 62syl5eqbrr 4796 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (exp‘1) ≤ (exp‘(log‘𝐴)))
64 efle 14968 . . . . . . . . 9 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6528, 32, 64sylancr 698 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (exp‘1) ≤ (exp‘(log‘𝐴))))
6663, 65mpbird 247 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ≤ (log‘𝐴))
67 posdif 10634 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝐵 / 𝐴) ∈ ℝ) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6828, 27, 67sylancr 698 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 < (𝐵 / 𝐴) ↔ 0 < ((𝐵 / 𝐴) − 1)))
6947, 68mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 0 < ((𝐵 / 𝐴) − 1))
70 lemul2 10989 . . . . . . . 8 ((1 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ ∧ (((𝐵 / 𝐴) − 1) ∈ ℝ ∧ 0 < ((𝐵 / 𝐴) − 1))) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
7144, 32, 30, 69, 70syl112anc 1443 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 ≤ (log‘𝐴) ↔ (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴))))
7266, 71mpbid 222 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7358, 72eqbrtrrd 4784 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) − 1) ≤ (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
7426, 30, 33, 56, 73ltletrd 10310 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) < (((𝐵 / 𝐴) − 1) · (log‘𝐴)))
75 relogdiv 24459 . . . . 5 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ+) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
7617, 23, 75syl2anc 696 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
77 1cnd 10169 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
7832recnd 10181 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐴) ∈ ℂ)
7937, 77, 78subdird 10600 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))))
801recnd 10181 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
8123rpne0d 11991 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → 𝐴 ≠ 0)
8280, 41, 78, 81div32d 10937 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((𝐵 / 𝐴) · (log‘𝐴)) = (𝐵 · ((log‘𝐴) / 𝐴)))
8378mulid2d 10171 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (1 · (log‘𝐴)) = (log‘𝐴))
8482, 83oveq12d 6783 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) · (log‘𝐴)) − (1 · (log‘𝐴))) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8579, 84eqtrd 2758 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((𝐵 / 𝐴) − 1) · (log‘𝐴)) = ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
8674, 76, 853brtr3d 4791 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴)))
87 relogcl 24442 . . . . 5 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
8817, 87syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) ∈ ℝ)
8932, 23rerpdivcld 12017 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐴) / 𝐴) ∈ ℝ)
901, 89remulcld 10183 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (𝐵 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
9188, 90, 32ltsub1d 10749 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)) ↔ ((log‘𝐵) − (log‘𝐴)) < ((𝐵 · ((log‘𝐴) / 𝐴)) − (log‘𝐴))))
9286, 91mpbird 247 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴)))
9388, 89, 17ltdivmuld 12037 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ (log‘𝐵) < (𝐵 · ((log‘𝐴) / 𝐴))))
9492, 93mpbird 247 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  +crp 11946  expce 14912  eceu 14913  logclog 24421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-e 14919  df-sin 14920  df-cos 14921  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423
This theorem is referenced by:  logdivlt  24487
  Copyright terms: Public domain W3C validator