![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logdivlt | Structured version Visualization version GIF version |
Description: The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.) |
Ref | Expression |
---|---|
logdivlt | ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logdivlti 24561 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴)) | |
2 | 1 | ex 449 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
3 | 2 | 3expa 1112 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ e ≤ 𝐴) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
4 | 3 | an32s 881 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
5 | 4 | adantrr 755 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
6 | fveq2 6348 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (log‘𝐴) = (log‘𝐵)) | |
7 | id 22 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
8 | 6, 7 | oveq12d 6827 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → ((log‘𝐴) / 𝐴) = ((log‘𝐵) / 𝐵)) |
9 | 8 | eqcomd 2762 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴)) |
10 | 9 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 = 𝐵 → ((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴))) |
11 | logdivlti 24561 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵) ∧ 𝐵 < 𝐴) → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)) | |
12 | 11 | ex 449 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
13 | 12 | 3expa 1112 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ e ≤ 𝐵) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
14 | 13 | an32s 881 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ e ≤ 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
15 | 14 | adantrr 755 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ e ≤ 𝐵) ∧ (𝐴 ∈ ℝ ∧ e ≤ 𝐴)) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
16 | 15 | ancoms 468 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
17 | 10, 16 | orim12d 919 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)))) |
18 | 17 | con3d 148 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (¬ (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
19 | simpl 474 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → 𝐵 ∈ ℝ) | |
20 | epos 15130 | . . . . . . . 8 ⊢ 0 < e | |
21 | 0re 10228 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
22 | ere 15014 | . . . . . . . . 9 ⊢ e ∈ ℝ | |
23 | ltletr 10317 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐵) → 0 < 𝐵)) | |
24 | 21, 22, 23 | mp3an12 1559 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → ((0 < e ∧ e ≤ 𝐵) → 0 < 𝐵)) |
25 | 20, 24 | mpani 714 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (e ≤ 𝐵 → 0 < 𝐵)) |
26 | 25 | imp 444 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → 0 < 𝐵) |
27 | 19, 26 | elrpd 12058 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → 𝐵 ∈ ℝ+) |
28 | relogcl 24517 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ) | |
29 | rerpdivcl 12050 | . . . . . 6 ⊢ (((log‘𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((log‘𝐵) / 𝐵) ∈ ℝ) | |
30 | 28, 29 | mpancom 706 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → ((log‘𝐵) / 𝐵) ∈ ℝ) |
31 | 27, 30 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → ((log‘𝐵) / 𝐵) ∈ ℝ) |
32 | simpl 474 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → 𝐴 ∈ ℝ) | |
33 | ltletr 10317 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴)) | |
34 | 21, 22, 33 | mp3an12 1559 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴)) |
35 | 20, 34 | mpani 714 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (e ≤ 𝐴 → 0 < 𝐴)) |
36 | 35 | imp 444 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → 0 < 𝐴) |
37 | 32, 36 | elrpd 12058 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → 𝐴 ∈ ℝ+) |
38 | relogcl 24517 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
39 | rerpdivcl 12050 | . . . . . 6 ⊢ (((log‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((log‘𝐴) / 𝐴) ∈ ℝ) | |
40 | 38, 39 | mpancom 706 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) / 𝐴) ∈ ℝ) |
41 | 37, 40 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → ((log‘𝐴) / 𝐴) ∈ ℝ) |
42 | axlttri 10297 | . . . 4 ⊢ ((((log‘𝐵) / 𝐵) ∈ ℝ ∧ ((log‘𝐴) / 𝐴) ∈ ℝ) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ ¬ (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)))) | |
43 | 31, 41, 42 | syl2anr 496 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ ¬ (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)))) |
44 | axlttri 10297 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | |
45 | 44 | ad2ant2r 800 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
46 | 18, 43, 45 | 3imtr4d 283 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) → 𝐴 < 𝐵)) |
47 | 5, 46 | impbid 202 | 1 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1628 ∈ wcel 2135 class class class wbr 4800 ‘cfv 6045 (class class class)co 6809 ℝcr 10123 0cc0 10124 < clt 10262 ≤ cle 10263 / cdiv 10872 ℝ+crp 12021 eceu 14988 logclog 24496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 ax-addf 10203 ax-mulf 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-fal 1634 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-iin 4671 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-se 5222 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-isom 6054 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-of 7058 df-om 7227 df-1st 7329 df-2nd 7330 df-supp 7460 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-2o 7726 df-oadd 7729 df-er 7907 df-map 8021 df-pm 8022 df-ixp 8071 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-fsupp 8437 df-fi 8478 df-sup 8509 df-inf 8510 df-oi 8576 df-card 8951 df-cda 9178 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-5 11270 df-6 11271 df-7 11272 df-8 11273 df-9 11274 df-n0 11481 df-z 11566 df-dec 11682 df-uz 11876 df-q 11978 df-rp 12022 df-xneg 12135 df-xadd 12136 df-xmul 12137 df-ioo 12368 df-ioc 12369 df-ico 12370 df-icc 12371 df-fz 12516 df-fzo 12656 df-fl 12783 df-mod 12859 df-seq 12992 df-exp 13051 df-fac 13251 df-bc 13280 df-hash 13308 df-shft 14002 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-limsup 14397 df-clim 14414 df-rlim 14415 df-sum 14612 df-ef 14993 df-e 14994 df-sin 14995 df-cos 14996 df-pi 14998 df-struct 16057 df-ndx 16058 df-slot 16059 df-base 16061 df-sets 16062 df-ress 16063 df-plusg 16152 df-mulr 16153 df-starv 16154 df-sca 16155 df-vsca 16156 df-ip 16157 df-tset 16158 df-ple 16159 df-ds 16162 df-unif 16163 df-hom 16164 df-cco 16165 df-rest 16281 df-topn 16282 df-0g 16300 df-gsum 16301 df-topgen 16302 df-pt 16303 df-prds 16306 df-xrs 16360 df-qtop 16365 df-imas 16366 df-xps 16368 df-mre 16444 df-mrc 16445 df-acs 16447 df-mgm 17439 df-sgrp 17481 df-mnd 17492 df-submnd 17533 df-mulg 17738 df-cntz 17946 df-cmn 18391 df-psmet 19936 df-xmet 19937 df-met 19938 df-bl 19939 df-mopn 19940 df-fbas 19941 df-fg 19942 df-cnfld 19945 df-top 20897 df-topon 20914 df-topsp 20935 df-bases 20948 df-cld 21021 df-ntr 21022 df-cls 21023 df-nei 21100 df-lp 21138 df-perf 21139 df-cn 21229 df-cnp 21230 df-haus 21317 df-tx 21563 df-hmeo 21756 df-fil 21847 df-fm 21939 df-flim 21940 df-flf 21941 df-xms 22322 df-ms 22323 df-tms 22324 df-cncf 22878 df-limc 23825 df-dv 23826 df-log 24498 |
This theorem is referenced by: logdivle 24563 bposlem7 25210 chebbnd1lem2 25354 chebbnd1lem3 25355 pntpbnd1a 25469 |
Copyright terms: Public domain | W3C validator |