MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivbnd Structured version   Visualization version   GIF version

Theorem logdivbnd 25444
Description: A bound on a sum of logs, used in pntlemk 25494. This is not as precise as logdivsum 25421 in its asymptotic behavior, but it is valid for all 𝑁 and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
logdivbnd (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2))
Distinct variable group:   𝑛,𝑁

Proof of Theorem logdivbnd
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11282 . . . 4 2 ∈ ℝ
2 fzfid 12966 . . . . 5 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
3 elfzuz 12531 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ‘1))
43adantl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (ℤ‘1))
5 nnuz 11916 . . . . . . . . 9 ℕ = (ℤ‘1)
64, 5syl6eleqr 2850 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
76nnrpd 12063 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ+)
87relogcld 24568 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℝ)
98, 6nndivred 11261 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ∈ ℝ)
102, 9fsumrecl 14664 . . . 4 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ)
11 remulcl 10213 . . . 4 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ∈ ℝ)
121, 10, 11sylancr 698 . . 3 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ∈ ℝ)
13 elfznn 12563 . . . . . . 7 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
1413adantl 473 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℕ)
1514nnrecred 11258 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑖) ∈ ℝ)
162, 15fsumrecl 14664 . . . 4 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ∈ ℝ)
1716resqcld 13229 . . 3 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ∈ ℝ)
18 nnrp 12035 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1918relogcld 24568 . . . . 5 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
20 peano2re 10401 . . . . 5 ((log‘𝑁) ∈ ℝ → ((log‘𝑁) + 1) ∈ ℝ)
2119, 20syl 17 . . . 4 (𝑁 ∈ ℕ → ((log‘𝑁) + 1) ∈ ℝ)
2221resqcld 13229 . . 3 (𝑁 ∈ ℕ → (((log‘𝑁) + 1)↑2) ∈ ℝ)
2310recnd 10260 . . . . 5 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℂ)
24232timesd 11467 . . . 4 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)))
25 fzfid 12966 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...𝑛) ∈ Fin)
26 elfznn 12563 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℕ)
2726adantl 473 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℕ)
2827nnrecred 11258 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℝ)
2925, 28fsumrecl 14664 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℝ)
3029, 6nndivred 11261 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℝ)
312, 30fsumrecl 14664 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℝ)
32 fzfid 12966 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...(𝑛 − 1)) ∈ Fin)
33 elfznn 12563 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑛 − 1)) → 𝑖 ∈ ℕ)
3433adantl 473 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...(𝑛 − 1))) → 𝑖 ∈ ℕ)
3534nnrecred 11258 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...(𝑛 − 1))) → (1 / 𝑖) ∈ ℝ)
3632, 35fsumrecl 14664 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℝ)
3736, 6nndivred 11261 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℝ)
382, 37fsumrecl 14664 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℝ)
396nncnd 11228 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℂ)
40 ax-1cn 10186 . . . . . . . . . . . . . . 15 1 ∈ ℂ
41 npcan 10482 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
4239, 40, 41sylancl 697 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((𝑛 − 1) + 1) = 𝑛)
4342fveq2d 6356 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
4443oveq2d 6829 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
45 nnm1nn0 11526 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
46 harmonicbnd3 24933 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) ∈ (0[,]γ))
476, 45, 463syl 18 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) ∈ (0[,]γ))
4844, 47eqeltrrd 2840 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ))
49 0re 10232 . . . . . . . . . . . . 13 0 ∈ ℝ
50 emre 24931 . . . . . . . . . . . . 13 γ ∈ ℝ
5149, 50elicc2i 12432 . . . . . . . . . . . 12 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ) ↔ ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ ℝ ∧ 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∧ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ≤ γ))
5251simp2bi 1141 . . . . . . . . . . 11 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ) → 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
5348, 52syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
5436, 8subge0d 10809 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ↔ (log‘𝑛) ≤ Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
5553, 54mpbid 222 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ≤ Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))
568, 36, 7, 55lediv1dd 12123 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
5727nnrpd 12063 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℝ+)
5857rpreccld 12075 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℝ+)
5958rpge0d 12069 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 0 ≤ (1 / 𝑖))
60 elfzelz 12535 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ)
6160adantl 473 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℤ)
62 peano2zm 11612 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 − 1) ∈ ℤ)
6361, 62syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ∈ ℤ)
646nnred 11227 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
6564lem1d 11149 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ≤ 𝑛)
66 eluz2 11885 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘(𝑛 − 1)) ↔ ((𝑛 − 1) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑛 − 1) ≤ 𝑛))
6763, 61, 65, 66syl3anbrc 1429 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (ℤ‘(𝑛 − 1)))
68 fzss2 12574 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑛 − 1)) → (1...(𝑛 − 1)) ⊆ (1...𝑛))
6967, 68syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...(𝑛 − 1)) ⊆ (1...𝑛))
7025, 28, 59, 69fsumless 14727 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖))
716nngt0d 11256 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 0 < 𝑛)
72 lediv1 11080 . . . . . . . . . 10 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℝ ∧ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ↔ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
7336, 29, 64, 71, 72syl112anc 1481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ↔ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
7470, 73mpbid 222 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
759, 37, 30, 56, 74letrd 10386 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
762, 9, 30, 75fsumle 14730 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
772, 9, 37, 56fsumle 14730 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
7810, 10, 31, 38, 76, 77le2addd 10838 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)))
79 oveq1 6820 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
8079oveq2d 6829 . . . . . . . . . 10 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
8180sumeq1d 14630 . . . . . . . . 9 (𝑚 = 𝑛 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))
8281, 81jca 555 . . . . . . . 8 (𝑚 = 𝑛 → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
83 oveq1 6820 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
8483oveq2d 6829 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
8584sumeq1d 14630 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))
8685, 85jca 555 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)))
87 oveq1 6820 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
88 1m1e0 11281 . . . . . . . . . . . . . 14 (1 − 1) = 0
8987, 88syl6eq 2810 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑚 − 1) = 0)
9089oveq2d 6829 . . . . . . . . . . . 12 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
91 fz10 12555 . . . . . . . . . . . 12 (1...0) = ∅
9290, 91syl6eq 2810 . . . . . . . . . . 11 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
9392sumeq1d 14630 . . . . . . . . . 10 (𝑚 = 1 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ ∅ (1 / 𝑖))
94 sum0 14651 . . . . . . . . . 10 Σ𝑖 ∈ ∅ (1 / 𝑖) = 0
9593, 94syl6eq 2810 . . . . . . . . 9 (𝑚 = 1 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0)
9695, 95jca 555 . . . . . . . 8 (𝑚 = 1 → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0 ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0))
97 oveq1 6820 . . . . . . . . . . 11 (𝑚 = (𝑁 + 1) → (𝑚 − 1) = ((𝑁 + 1) − 1))
9897oveq2d 6829 . . . . . . . . . 10 (𝑚 = (𝑁 + 1) → (1...(𝑚 − 1)) = (1...((𝑁 + 1) − 1)))
9998sumeq1d 14630 . . . . . . . . 9 (𝑚 = (𝑁 + 1) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖))
10099, 99jca 555 . . . . . . . 8 (𝑚 = (𝑁 + 1) → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)))
101 peano2nn 11224 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
102101, 5syl6eleq 2849 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘1))
103 fzfid 12966 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1...(𝑚 − 1)) ∈ Fin)
104 elfznn 12563 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑚 − 1)) → 𝑖 ∈ ℕ)
105104adantl 473 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) ∧ 𝑖 ∈ (1...(𝑚 − 1))) → 𝑖 ∈ ℕ)
106105nnrecred 11258 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) ∧ 𝑖 ∈ (1...(𝑚 − 1))) → (1 / 𝑖) ∈ ℝ)
107103, 106fsumrecl 14664 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) ∈ ℝ)
108107recnd 10260 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) ∈ ℂ)
10982, 86, 96, 100, 102, 108, 108fsumparts 14737 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) − Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))))
110 nnz 11591 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
111 fzval3 12731 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1...𝑁) = (1..^(𝑁 + 1)))
112110, 111syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (1...𝑁) = (1..^(𝑁 + 1)))
113112eqcomd 2766 . . . . . . . 8 (𝑁 ∈ ℕ → (1..^(𝑁 + 1)) = (1...𝑁))
114 pncan 10479 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
11539, 40, 114sylancl 697 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((𝑛 + 1) − 1) = 𝑛)
116115oveq2d 6829 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
117116sumeq1d 14630 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑛)(1 / 𝑖))
11828recnd 10260 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℂ)
119 oveq2 6821 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (1 / 𝑖) = (1 / 𝑛))
1204, 118, 119fsumm1 14679 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)))
121117, 120eqtrd 2794 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)))
122121oveq1d 6828 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
12336recnd 10260 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℂ)
1246nnrecred 11258 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1 / 𝑛) ∈ ℝ)
125124recnd 10260 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1 / 𝑛) ∈ ℂ)
126123, 125pncan2d 10586 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = (1 / 𝑛))
127122, 126eqtrd 2794 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = (1 / 𝑛))
128127oveq2d 6829 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (1 / 𝑛)))
1296nnne0d 11257 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ≠ 0)
130123, 39, 129divrecd 10996 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (1 / 𝑛)))
131128, 130eqtr4d 2797 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
132113, 131sumeq12rdv 14637 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
133 nncn 11220 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
134 pncan 10479 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
135133, 40, 134sylancl 697 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
136135oveq2d 6829 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1...((𝑁 + 1) − 1)) = (1...𝑁))
137136sumeq1d 14630 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
138137, 137oveq12d 6831 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) · Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)))
13916recnd 10260 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ∈ ℂ)
140139sqvald 13199 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) · Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)))
141138, 140eqtr4d 2797 . . . . . . . . . 10 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
142 0cn 10224 . . . . . . . . . . . 12 0 ∈ ℂ
143142mul01i 10418 . . . . . . . . . . 11 (0 · 0) = 0
144143a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 · 0) = 0)
145141, 144oveq12d 6831 . . . . . . . . 9 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) = ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − 0))
146139sqcld 13200 . . . . . . . . . 10 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ∈ ℂ)
147146subid1d 10573 . . . . . . . . 9 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − 0) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
148145, 147eqtrd 2794 . . . . . . . 8 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
149127, 117oveq12d 6831 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = ((1 / 𝑛) · Σ𝑖 ∈ (1...𝑛)(1 / 𝑖)))
15029recnd 10260 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℂ)
151150, 39, 129divrec2d 10997 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) = ((1 / 𝑛) · Σ𝑖 ∈ (1...𝑛)(1 / 𝑖)))
152149, 151eqtr4d 2797 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
153113, 152sumeq12rdv 14637 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
154148, 153oveq12d 6831 . . . . . . 7 (𝑁 ∈ ℕ → (((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) − Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))) = ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
155109, 132, 1543eqtr3rd 2803 . . . . . 6 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
15631recnd 10260 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℂ)
15738recnd 10260 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℂ)
158146, 156, 157subaddd 10602 . . . . . 6 (𝑁 ∈ ℕ → (((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ↔ (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2)))
159155, 158mpbid 222 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
16078, 159breqtrd 4830 . . . 4 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
16124, 160eqbrtrd 4826 . . 3 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
162 flid 12803 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
163110, 162syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘𝑁) = 𝑁)
164163oveq2d 6829 . . . . . 6 (𝑁 ∈ ℕ → (1...(⌊‘𝑁)) = (1...𝑁))
165164sumeq1d 14630 . . . . 5 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
166 nnre 11219 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
167 nnge1 11238 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
168 harmonicubnd 24935 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ≤ 𝑁) → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) ≤ ((log‘𝑁) + 1))
169166, 167, 168syl2anc 696 . . . . 5 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) ≤ ((log‘𝑁) + 1))
170165, 169eqbrtrrd 4828 . . . 4 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ≤ ((log‘𝑁) + 1))
17114nnrpd 12063 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℝ+)
172171rpreccld 12075 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑖) ∈ ℝ+)
173172rpge0d 12069 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (1 / 𝑖))
1742, 15, 173fsumge0 14726 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
17549a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ∈ ℝ)
176 log1 24531 . . . . . . 7 (log‘1) = 0
177 1rp 12029 . . . . . . . . 9 1 ∈ ℝ+
178 logleb 24548 . . . . . . . . 9 ((1 ∈ ℝ+𝑁 ∈ ℝ+) → (1 ≤ 𝑁 ↔ (log‘1) ≤ (log‘𝑁)))
179177, 18, 178sylancr 698 . . . . . . . 8 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ (log‘1) ≤ (log‘𝑁)))
180167, 179mpbid 222 . . . . . . 7 (𝑁 ∈ ℕ → (log‘1) ≤ (log‘𝑁))
181176, 180syl5eqbrr 4840 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (log‘𝑁))
18219lep1d 11147 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ≤ ((log‘𝑁) + 1))
183175, 19, 21, 181, 182letrd 10386 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ ((log‘𝑁) + 1))
18416, 21, 174, 183le2sqd 13238 . . . 4 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ≤ ((log‘𝑁) + 1) ↔ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ≤ (((log‘𝑁) + 1)↑2)))
185170, 184mpbid 222 . . 3 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ≤ (((log‘𝑁) + 1)↑2))
18612, 17, 22, 161, 185letrd 10386 . 2 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2))
1871a1i 11 . . 3 (𝑁 ∈ ℕ → 2 ∈ ℝ)
188 2pos 11304 . . . 4 0 < 2
189188a1i 11 . . 3 (𝑁 ∈ ℕ → 0 < 2)
190 lemuldiv2 11096 . . 3 ((Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘𝑁) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2) ↔ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2)))
19110, 22, 187, 189, 190syl112anc 1481 . 2 (𝑁 ∈ ℕ → ((2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2) ↔ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2)))
192186, 191mpbid 222 1 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wss 3715  c0 4058   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  +crp 12025  [,]cicc 12371  ...cfz 12519  ..^cfzo 12659  cfl 12785  cexp 13054  Σcsu 14615  logclog 24500  γcem 24917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-e 14998  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-em 24918
This theorem is referenced by:  pntlemk  25494
  Copyright terms: Public domain W3C validator