MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem4 Structured version   Visualization version   GIF version

Theorem logcnlem4 24612
Description: Lemma for logcn 24614. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
logcnlem.b (𝜑𝐵𝐷)
logcnlem.l (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
Assertion
Ref Expression
logcnlem4 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)

Proof of Theorem logcnlem4
StepHypRef Expression
1 logcnlem.a . . . . . . . 8 (𝜑𝐴𝐷)
2 logcn.d . . . . . . . . . 10 𝐷 = (ℂ ∖ (-∞(,]0))
32ellogdm 24606 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
43simplbi 478 . . . . . . . 8 (𝐴𝐷𝐴 ∈ ℂ)
51, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
62logdmn0 24607 . . . . . . . 8 (𝐴𝐷𝐴 ≠ 0)
71, 6syl 17 . . . . . . 7 (𝜑𝐴 ≠ 0)
85, 7logcld 24538 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
98imcld 14155 . . . . 5 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
109recnd 10281 . . . 4 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
11 logcnlem.b . . . . . . . 8 (𝜑𝐵𝐷)
122ellogdm 24606 . . . . . . . . 9 (𝐵𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ+)))
1312simplbi 478 . . . . . . . 8 (𝐵𝐷𝐵 ∈ ℂ)
1411, 13syl 17 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
152logdmn0 24607 . . . . . . . 8 (𝐵𝐷𝐵 ≠ 0)
1611, 15syl 17 . . . . . . 7 (𝜑𝐵 ≠ 0)
1714, 16logcld 24538 . . . . . 6 (𝜑 → (log‘𝐵) ∈ ℂ)
1817imcld 14155 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℝ)
1918recnd 10281 . . . 4 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℂ)
2010, 19abssubd 14412 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
2117, 8imsubd 14177 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
22 efsub 15050 . . . . . . . . . 10 (((log‘𝐵) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
2317, 8, 22syl2anc 696 . . . . . . . . 9 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
24 eflog 24544 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
2514, 16, 24syl2anc 696 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐵)) = 𝐵)
26 eflog 24544 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
275, 7, 26syl2anc 696 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
2825, 27oveq12d 6833 . . . . . . . . 9 (𝜑 → ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))) = (𝐵 / 𝐴))
2923, 28eqtrd 2795 . . . . . . . 8 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴))
3014, 5, 7divcld 11014 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
3114, 5, 16, 7divne0d 11030 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ≠ 0)
3217, 8subcld 10605 . . . . . . . . . 10 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ℂ)
33 logcnlem.s . . . . . . . . . . . . 13 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
34 logcnlem.t . . . . . . . . . . . . 13 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
35 logcnlem.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ+)
36 logcnlem.l . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
372, 33, 34, 1, 35, 11, 36logcnlem3 24611 . . . . . . . . . . . 12 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
3837simpld 477 . . . . . . . . . . 11 (𝜑 → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
3938, 21breqtrrd 4833 . . . . . . . . . 10 (𝜑 → -π < (ℑ‘((log‘𝐵) − (log‘𝐴))))
4037simprd 482 . . . . . . . . . . 11 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
4121, 40eqbrtrd 4827 . . . . . . . . . 10 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π)
42 ellogrn 24527 . . . . . . . . . 10 (((log‘𝐵) − (log‘𝐴)) ∈ ran log ↔ (((log‘𝐵) − (log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐵) − (log‘𝐴))) ∧ (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π))
4332, 39, 41, 42syl3anbrc 1429 . . . . . . . . 9 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ran log)
44 logeftb 24551 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ (𝐵 / 𝐴) ≠ 0 ∧ ((log‘𝐵) − (log‘𝐴)) ∈ ran log) → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4530, 31, 43, 44syl3anc 1477 . . . . . . . 8 (𝜑 → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4629, 45mpbird 247 . . . . . . 7 (𝜑 → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
4746eqcomd 2767 . . . . . 6 (𝜑 → ((log‘𝐵) − (log‘𝐴)) = (log‘(𝐵 / 𝐴)))
4847fveq2d 6358 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
4921, 48eqtr3d 2797 . . . 4 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
5049fveq2d 6358 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5120, 50eqtrd 2795 . 2 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5230, 31logcld 24538 . . . . . 6 (𝜑 → (log‘(𝐵 / 𝐴)) ∈ ℂ)
5352imcld 14155 . . . . 5 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℝ)
5453recnd 10281 . . . 4 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℂ)
5554abscld 14395 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
56 0red 10254 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
57 1re 10252 . . . . . . . . . . 11 1 ∈ ℝ
585, 14subcld 10605 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ∈ ℂ)
5958abscld 14395 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
605, 7absrpcld 14407 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6159, 60rerpdivcld 12117 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ)
62 resubcl 10558 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ) → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6357, 61, 62sylancr 698 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6430recld 14154 . . . . . . . . . 10 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℝ)
655abscld 14395 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐴) ∈ ℝ)
6635rpred 12086 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℝ)
67 1rp 12050 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
68 rpaddcl 12068 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
6967, 35, 68sylancr 698 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + 𝑅) ∈ ℝ+)
7066, 69rerpdivcld 12117 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ)
7165, 70remulcld 10283 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ)
7234, 71syl5eqel 2844 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
73 rpre 12053 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
7473adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
755imcld 14155 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
7675recnd 10281 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7776abscld 14395 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7877adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7974, 78ifclda 4265 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ)
8033, 79syl5eqel 2844 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
81 ltmin 12239 . . . . . . . . . . . . . . . . 17 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8259, 80, 72, 81syl3anc 1477 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8336, 82mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇))
8483simprd 482 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐵)) < 𝑇)
8569rpred 12086 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℝ)
8666ltp1d 11167 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 < (𝑅 + 1))
8766recnd 10281 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑅 ∈ ℂ)
88 ax-1cn 10207 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
89 addcom 10435 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑅 + 1) = (1 + 𝑅))
9087, 88, 89sylancl 697 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 + 1) = (1 + 𝑅))
9186, 90breqtrd 4831 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 < (1 + 𝑅))
9266, 85, 91ltled 10398 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ≤ (1 + 𝑅))
9385recnd 10281 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℂ)
9493mulid1d 10270 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + 𝑅) · 1) = (1 + 𝑅))
9592, 94breqtrrd 4833 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ≤ ((1 + 𝑅) · 1))
9657a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
9766, 96, 69ledivmuld 12139 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ 𝑅 ≤ ((1 + 𝑅) · 1)))
9895, 97mpbird 247 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 / (1 + 𝑅)) ≤ 1)
9970, 96, 60lemul2d 12130 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1)))
10098, 99mpbid 222 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1))
10165recnd 10281 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐴) ∈ ℂ)
102101mulid1d 10270 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
103100, 102breqtrd 4831 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ (abs‘𝐴))
10434, 103syl5eqbr 4840 . . . . . . . . . . . . . 14 (𝜑𝑇 ≤ (abs‘𝐴))
10559, 72, 65, 84, 104ltletrd 10410 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < (abs‘𝐴))
106105, 102breqtrrd 4833 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1))
10759, 96, 60ltdivmuld 12137 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1)))
108106, 107mpbird 247 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1)
109 posdif 10734 . . . . . . . . . . . 12 ((((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
11061, 57, 109sylancl 697 . . . . . . . . . . 11 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
111108, 110mpbid 222 . . . . . . . . . 10 (𝜑 → 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
11258, 5, 7divcld 11014 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) / 𝐴) ∈ ℂ)
113112releabsd 14410 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) ≤ (abs‘((𝐴𝐵) / 𝐴)))
1145, 14, 5, 7divsubdird 11053 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝐵) / 𝐴) = ((𝐴 / 𝐴) − (𝐵 / 𝐴)))
1155, 7dividd 11012 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 / 𝐴) = 1)
116115oveq1d 6830 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 / 𝐴) − (𝐵 / 𝐴)) = (1 − (𝐵 / 𝐴)))
117114, 116eqtrd 2795 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐵) / 𝐴) = (1 − (𝐵 / 𝐴)))
118117fveq2d 6358 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (ℜ‘(1 − (𝐵 / 𝐴))))
119 resub 14087 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
12088, 30, 119sylancr 698 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
121118, 120eqtrd 2795 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
122 re1 14114 . . . . . . . . . . . . . 14 (ℜ‘1) = 1
123122oveq1i 6825 . . . . . . . . . . . . 13 ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))) = (1 − (ℜ‘(𝐵 / 𝐴)))
124121, 123syl6eq 2811 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (1 − (ℜ‘(𝐵 / 𝐴))))
12558, 5, 7absdivd 14414 . . . . . . . . . . . 12 (𝜑 → (abs‘((𝐴𝐵) / 𝐴)) = ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
126113, 124, 1253brtr3d 4836 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
12796, 64, 61, 126subled 10843 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ≤ (ℜ‘(𝐵 / 𝐴)))
12856, 63, 64, 111, 127ltletrd 10410 . . . . . . . . 9 (𝜑 → 0 < (ℜ‘(𝐵 / 𝐴)))
129 argregt0 24577 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ 0 < (ℜ‘(𝐵 / 𝐴))) → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
13030, 128, 129syl2anc 696 . . . . . . . 8 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
131 cosq14gt0 24483 . . . . . . . 8 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
132130, 131syl 17 . . . . . . 7 (𝜑 → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
133132gt0ne0d 10805 . . . . . 6 (𝜑 → (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≠ 0)
13453, 133retancld 15095 . . . . 5 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
135134recnd 10281 . . . 4 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℂ)
136135abscld 14395 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) ∈ ℝ)
137 tanabsge 24479 . . . 4 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
138130, 137syl 17 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
139128gt0ne0d 10805 . . . . . . 7 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ≠ 0)
140 tanarg 24586 . . . . . . 7 (((𝐵 / 𝐴) ∈ ℂ ∧ (ℜ‘(𝐵 / 𝐴)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
14130, 139, 140syl2anc 696 . . . . . 6 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
142141fveq2d 6358 . . . . 5 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))))
14330imcld 14155 . . . . . . 7 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℝ)
144143recnd 10281 . . . . . 6 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℂ)
14564recnd 10281 . . . . . 6 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℂ)
146144, 145, 139absdivd 14414 . . . . 5 (𝜑 → (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))))
14756, 64, 128ltled 10398 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘(𝐵 / 𝐴)))
14864, 147absidd 14381 . . . . . 6 (𝜑 → (abs‘(ℜ‘(𝐵 / 𝐴))) = (ℜ‘(𝐵 / 𝐴)))
149148oveq2d 6831 . . . . 5 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
150142, 146, 1493eqtrd 2799 . . . 4 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
151144abscld 14395 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ)
15264, 66remulcld 10283 . . . . . 6 (𝜑 → ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ∈ ℝ)
15314, 5subcld 10605 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℂ)
154153, 5, 7divcld 11014 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 𝐴) ∈ ℂ)
155 absimle 14269 . . . . . . . 8 (((𝐵𝐴) / 𝐴) ∈ ℂ → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
156154, 155syl 17 . . . . . . 7 (𝜑 → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
15714, 5, 5, 7divsubdird 11053 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − (𝐴 / 𝐴)))
158115oveq2d 6831 . . . . . . . . . . 11 (𝜑 → ((𝐵 / 𝐴) − (𝐴 / 𝐴)) = ((𝐵 / 𝐴) − 1))
159157, 158eqtrd 2795 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − 1))
160159fveq2d 6358 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵𝐴) / 𝐴)) = (ℑ‘((𝐵 / 𝐴) − 1)))
161 imsub 14095 . . . . . . . . . . 11 (((𝐵 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
16230, 88, 161sylancl 697 . . . . . . . . . 10 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
163 im1 14115 . . . . . . . . . . 11 (ℑ‘1) = 0
164163oveq2i 6826 . . . . . . . . . 10 ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)) = ((ℑ‘(𝐵 / 𝐴)) − 0)
165162, 164syl6eq 2811 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − 0))
166144subid1d 10594 . . . . . . . . 9 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) − 0) = (ℑ‘(𝐵 / 𝐴)))
167160, 165, 1663eqtrrd 2800 . . . . . . . 8 (𝜑 → (ℑ‘(𝐵 / 𝐴)) = (ℑ‘((𝐵𝐴) / 𝐴)))
168167fveq2d 6358 . . . . . . 7 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) = (abs‘(ℑ‘((𝐵𝐴) / 𝐴))))
1695, 14abssubd 14412 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
170169oveq1d 6830 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
171153, 5, 7absdivd 14414 . . . . . . . 8 (𝜑 → (abs‘((𝐵𝐴) / 𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
172170, 171eqtr4d 2798 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = (abs‘((𝐵𝐴) / 𝐴)))
173156, 168, 1723brtr4d 4837 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
17465, 59resubcld 10671 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ∈ ℝ)
175174, 66remulcld 10283 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ∈ ℝ)
17665, 152remulcld 10283 . . . . . . . 8 (𝜑 → ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)) ∈ ℝ)
17759recnd 10281 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℂ)
17888a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
179177, 178, 87adddid 10277 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)))
180177mulid1d 10270 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐴𝐵)) · 1) = (abs‘(𝐴𝐵)))
181180oveq1d 6830 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
182179, 181eqtrd 2795 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
18369rpne0d 12091 . . . . . . . . . . . . . . 15 (𝜑 → (1 + 𝑅) ≠ 0)
184101, 87, 93, 183divassd 11049 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))))
185184, 34syl6eqr 2813 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = 𝑇)
18684, 185breqtrrd 4833 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅)))
18765, 66remulcld 10283 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐴) · 𝑅) ∈ ℝ)
18859, 187, 69ltmuldivd 12133 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅))))
189186, 188mpbird 247 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅))
190182, 189eqbrtrrd 4829 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅))
19159, 66remulcld 10283 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · 𝑅) ∈ ℝ)
19259, 191, 187ltaddsubd 10840 . . . . . . . . . 10 (𝜑 → (((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅))))
193190, 192mpbid 222 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
194101, 177, 87subdird 10700 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) = (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
195193, 194breqtrrd 4833 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅))
19660rpne0d 12091 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐴) ≠ 0)
197101, 177, 101, 196divsubdird 11053 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
198101, 196dividd 11012 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘𝐴) / (abs‘𝐴)) = 1)
199198oveq1d 6830 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
200197, 199eqtrd 2795 . . . . . . . . . . . 12 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
201200, 127eqbrtrd 4827 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)))
202174, 64, 60ledivmuld 12139 . . . . . . . . . . 11 (𝜑 → ((((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)) ↔ ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴)))))
203201, 202mpbid 222 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))))
20465, 64remulcld 10283 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ∈ ℝ)
205174, 204, 35lemul1d 12129 . . . . . . . . . 10 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ↔ (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅)))
206203, 205mpbid 222 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅))
207101, 145, 87mulassd 10276 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅) = ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
208206, 207breqtrd 4831 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
20959, 175, 176, 195, 208ltletrd 10410 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
21059, 152, 60ltdivmuld 12137 . . . . . . 7 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅))))
211209, 210mpbird 247 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
212151, 61, 152, 173, 211lelttrd 10408 . . . . 5 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
213 ltdivmul 11111 . . . . . 6 (((abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((ℜ‘(𝐵 / 𝐴)) ∈ ℝ ∧ 0 < (ℜ‘(𝐵 / 𝐴)))) → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
214151, 66, 64, 128, 213syl112anc 1481 . . . . 5 (𝜑 → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
215212, 214mpbird 247 . . . 4 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅)
216150, 215eqbrtrd 4827 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) < 𝑅)
21755, 136, 66, 138, 216lelttrd 10408 . 2 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) < 𝑅)
21851, 217eqbrtrd 4827 1 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wne 2933  cdif 3713  ifcif 4231   class class class wbr 4805  ran crn 5268  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  -∞cmnf 10285   < clt 10287  cle 10288  cmin 10479  -cneg 10480   / cdiv 10897  2c2 11283  +crp 12046  (,)cioo 12389  (,]cioc 12390  cre 14057  cim 14058  abscabs 14194  expce 15012  cosccos 15015  tanctan 15016  πcpi 15017  logclog 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-fac 13276  df-bc 13305  df-hash 13333  df-shft 14027  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-limsup 14422  df-clim 14439  df-rlim 14440  df-sum 14637  df-ef 15018  df-sin 15020  df-cos 15021  df-tan 15022  df-pi 15023  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-lp 21163  df-perf 21164  df-cn 21254  df-cnp 21255  df-haus 21342  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cncf 22903  df-limc 23850  df-dv 23851  df-log 24524
This theorem is referenced by:  logcnlem5  24613
  Copyright terms: Public domain W3C validator