MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbrec Structured version   Visualization version   GIF version

Theorem logbrec 24740
Description: Logarithm of a reciprocal changes sign. See logrec 24721. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
logbrec ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴))

Proof of Theorem logbrec
StepHypRef Expression
1 simpr 479 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+)
21rpreccld 12095 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (1 / 𝐴) ∈ ℝ+)
3 relogbval 24730 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ (1 / 𝐴) ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = ((log‘(1 / 𝐴)) / (log‘𝐵)))
42, 3syldan 488 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = ((log‘(1 / 𝐴)) / (log‘𝐵)))
5 relogbval 24730 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵)))
65negeqd 10487 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → -(𝐵 logb 𝐴) = -((log‘𝐴) / (log‘𝐵)))
71rpcnd 12087 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℂ)
81rpne0d 12090 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → 𝐴 ≠ 0)
97, 8logcld 24537 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
10 zgt1rpn0n1 12084 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1110simp1d 1137 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
1211adantr 472 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → 𝐵 ∈ ℝ+)
1312relogcld 24589 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
1413recnd 10280 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (log‘𝐵) ∈ ℂ)
1510simp3d 1139 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 1)
1615adantr 472 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → 𝐵 ≠ 1)
17 logne0 24546 . . . . 5 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
1812, 16, 17syl2anc 696 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (log‘𝐵) ≠ 0)
199, 14, 18divnegd 11026 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → -((log‘𝐴) / (log‘𝐵)) = (-(log‘𝐴) / (log‘𝐵)))
207, 8reccld 11006 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (1 / 𝐴) ∈ ℂ)
217, 8recne0d 11007 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (1 / 𝐴) ≠ 0)
2220, 21logcld 24537 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (log‘(1 / 𝐴)) ∈ ℂ)
231relogcld 24589 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (log‘𝐴) ∈ ℝ)
2423reim0d 14184 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (ℑ‘(log‘𝐴)) = 0)
25 0re 10252 . . . . . . . . . . 11 0 ∈ ℝ
26 pipos 24432 . . . . . . . . . . 11 0 < π
2725, 26gtneii 10361 . . . . . . . . . 10 π ≠ 0
2827a1i 11 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → π ≠ 0)
2928necomd 2987 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → 0 ≠ π)
3024, 29eqnetrd 2999 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (ℑ‘(log‘𝐴)) ≠ π)
31 logrec 24721 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))
327, 8, 30, 31syl3anc 1477 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (log‘𝐴) = -(log‘(1 / 𝐴)))
3332eqcomd 2766 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → -(log‘(1 / 𝐴)) = (log‘𝐴))
3422, 33negcon1ad 10599 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → -(log‘𝐴) = (log‘(1 / 𝐴)))
3534oveq1d 6829 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (-(log‘𝐴) / (log‘𝐵)) = ((log‘(1 / 𝐴)) / (log‘𝐵)))
366, 19, 353eqtrd 2798 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → -(𝐵 logb 𝐴) = ((log‘(1 / 𝐴)) / (log‘𝐵)))
374, 36eqtr4d 2797 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  cfv 6049  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149  -cneg 10479   / cdiv 10896  2c2 11282  cuz 11899  +crp 12045  cim 14057  πcpi 15016  logclog 24521   logb clogb 24722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-logb 24723
This theorem is referenced by:  dya2ub  30662
  Copyright terms: Public domain W3C validator