MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbmpt Structured version   Visualization version   GIF version

Theorem logbmpt 24717
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.)
Assertion
Ref Expression
logbmpt ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Distinct variable group:   𝑦,𝐵

Proof of Theorem logbmpt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-logb 24694 . . 3 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
2 ovexd 6835 . . . 4 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V)
32ralrimivva 3101 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V)
4 ax-1cn 10178 . . . . . 6 1 ∈ ℂ
5 ax-1ne0 10189 . . . . . . 7 1 ≠ 0
6 elsng 4327 . . . . . . . 8 (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0))
74, 6ax-mp 5 . . . . . . 7 (1 ∈ {0} ↔ 1 = 0)
85, 7nemtbir 3019 . . . . . 6 ¬ 1 ∈ {0}
9 eldif 3717 . . . . . 6 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
104, 8, 9mpbir2an 993 . . . . 5 1 ∈ (ℂ ∖ {0})
1110ne0ii 4058 . . . 4 (ℂ ∖ {0}) ≠ ∅
1211a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅)
13 cnex 10201 . . . . 5 ℂ ∈ V
14 difexg 4952 . . . . 5 (ℂ ∈ V → (ℂ ∖ {0}) ∈ V)
1513, 14ax-mp 5 . . . 4 (ℂ ∖ {0}) ∈ V
1615a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V)
17 eldifpr 4341 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1817biimpri 218 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1}))
191, 3, 12, 16, 18mpt2curryvald 7557 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))))
20 csbov2g 6846 . . . . 5 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)))
21 csbfv 6386 . . . . . . 7 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵)
2221a1i 11 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵))
2322oveq2d 6821 . . . . 5 (𝐵 ∈ ℂ → ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2420, 23eqtrd 2786 . . . 4 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
25243ad2ant1 1127 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2625mpteq2dv 4889 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
2719, 26eqtrd 2786 1 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  Vcvv 3332  csb 3666  cdif 3704  c0 4050  {csn 4313  {cpr 4315  cmpt 4873  cfv 6041  (class class class)co 6805  curry ccur 7552  cc 10118  0cc0 10120  1c1 10121   / cdiv 10868  logclog 24492   logb clogb 24693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-1cn 10178  ax-1ne0 10189
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-cur 7554  df-logb 24694
This theorem is referenced by:  logbf  24718  relogbf  24720  logblog  24721
  Copyright terms: Public domain W3C validator