![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logblog | Structured version Visualization version GIF version |
Description: The general logarithm to the base being Euler's constant regarded as function is the natural logarithm. (Contributed by AV, 12-Jun-2020.) |
Ref | Expression |
---|---|
logblog | ⊢ (curry logb ‘e) = log |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | loge 24453 | . . . . . 6 ⊢ (log‘e) = 1 | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → (log‘e) = 1) |
3 | 2 | oveq2d 6781 | . . . 4 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → ((log‘𝑦) / (log‘e)) = ((log‘𝑦) / 1)) |
4 | eldifsn 4425 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
5 | logcl 24435 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (log‘𝑦) ∈ ℂ) | |
6 | 4, 5 | sylbi 207 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → (log‘𝑦) ∈ ℂ) |
7 | 6 | div1d 10906 | . . . 4 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → ((log‘𝑦) / 1) = (log‘𝑦)) |
8 | 3, 7 | eqtrd 2758 | . . 3 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → ((log‘𝑦) / (log‘e)) = (log‘𝑦)) |
9 | 8 | mpteq2ia 4848 | . 2 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘e))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (log‘𝑦)) |
10 | ere 14939 | . . . 4 ⊢ e ∈ ℝ | |
11 | 10 | recni 10165 | . . 3 ⊢ e ∈ ℂ |
12 | epr 15056 | . . . 4 ⊢ e ∈ ℝ+ | |
13 | rpne0 11962 | . . . 4 ⊢ (e ∈ ℝ+ → e ≠ 0) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ e ≠ 0 |
15 | egt2lt3 15054 | . . . 4 ⊢ (2 < e ∧ e < 3) | |
16 | 1re 10152 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
17 | 2re 11203 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
18 | 16, 17, 10 | 3pm3.2i 1376 | . . . . . . . 8 ⊢ (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ e ∈ ℝ) |
19 | 1lt2 11307 | . . . . . . . 8 ⊢ 1 < 2 | |
20 | lttr 10227 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ e ∈ ℝ) → ((1 < 2 ∧ 2 < e) → 1 < e)) | |
21 | 20 | expd 451 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ e ∈ ℝ) → (1 < 2 → (2 < e → 1 < e))) |
22 | 18, 19, 21 | mp2 9 | . . . . . . 7 ⊢ (2 < e → 1 < e) |
23 | 22 | olcd 407 | . . . . . 6 ⊢ (2 < e → (e < 1 ∨ 1 < e)) |
24 | 10, 16 | pm3.2i 470 | . . . . . . 7 ⊢ (e ∈ ℝ ∧ 1 ∈ ℝ) |
25 | lttri2 10233 | . . . . . . 7 ⊢ ((e ∈ ℝ ∧ 1 ∈ ℝ) → (e ≠ 1 ↔ (e < 1 ∨ 1 < e))) | |
26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ (2 < e → (e ≠ 1 ↔ (e < 1 ∨ 1 < e))) |
27 | 23, 26 | mpbird 247 | . . . . 5 ⊢ (2 < e → e ≠ 1) |
28 | 27 | adantr 472 | . . . 4 ⊢ ((2 < e ∧ e < 3) → e ≠ 1) |
29 | 15, 28 | ax-mp 5 | . . 3 ⊢ e ≠ 1 |
30 | logbmpt 24646 | . . 3 ⊢ ((e ∈ ℂ ∧ e ≠ 0 ∧ e ≠ 1) → (curry logb ‘e) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘e)))) | |
31 | 11, 14, 29, 30 | mp3an 1537 | . 2 ⊢ (curry logb ‘e) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘e))) |
32 | logf1o 24431 | . . . 4 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
33 | f1ofn 6251 | . . . 4 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log Fn (ℂ ∖ {0})) | |
34 | 32, 33 | ax-mp 5 | . . 3 ⊢ log Fn (ℂ ∖ {0}) |
35 | dffn5 6355 | . . 3 ⊢ (log Fn (ℂ ∖ {0}) ↔ log = (𝑦 ∈ (ℂ ∖ {0}) ↦ (log‘𝑦))) | |
36 | 34, 35 | mpbi 220 | . 2 ⊢ log = (𝑦 ∈ (ℂ ∖ {0}) ↦ (log‘𝑦)) |
37 | 9, 31, 36 | 3eqtr4i 2756 | 1 ⊢ (curry logb ‘e) = log |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∖ cdif 3677 {csn 4285 class class class wbr 4760 ↦ cmpt 4837 ran crn 5219 Fn wfn 5996 –1-1-onto→wf1o 6000 ‘cfv 6001 (class class class)co 6765 curry ccur 7511 ℂcc 10047 ℝcr 10048 0cc0 10049 1c1 10050 < clt 10187 / cdiv 10797 2c2 11183 3c3 11184 ℝ+crp 11946 eceu 14913 logclog 24421 logb clogb 24622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-cur 7513 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-map 7976 df-pm 7977 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-fi 8433 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-ioo 12293 df-ioc 12294 df-ico 12295 df-icc 12296 df-fz 12441 df-fzo 12581 df-fl 12708 df-mod 12784 df-seq 12917 df-exp 12976 df-fac 13176 df-bc 13205 df-hash 13233 df-shft 13927 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-limsup 14322 df-clim 14339 df-rlim 14340 df-sum 14537 df-ef 14918 df-e 14919 df-sin 14920 df-cos 14921 df-pi 14923 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-starv 16079 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-hom 16089 df-cco 16090 df-rest 16206 df-topn 16207 df-0g 16225 df-gsum 16226 df-topgen 16227 df-pt 16228 df-prds 16231 df-xrs 16285 df-qtop 16290 df-imas 16291 df-xps 16293 df-mre 16369 df-mrc 16370 df-acs 16372 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-mulg 17663 df-cntz 17871 df-cmn 18316 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-fbas 19866 df-fg 19867 df-cnfld 19870 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-cld 20946 df-ntr 20947 df-cls 20948 df-nei 21025 df-lp 21063 df-perf 21064 df-cn 21154 df-cnp 21155 df-haus 21242 df-tx 21488 df-hmeo 21681 df-fil 21772 df-fm 21864 df-flim 21865 df-flf 21866 df-xms 22247 df-ms 22248 df-tms 22249 df-cncf 22803 df-limc 23750 df-dv 23751 df-log 24423 df-logb 24623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |