MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem2 Structured version   Visualization version   GIF version

Theorem log2ublem2 24608
Description: Lemma for log2ub 24610. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem2.1 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵)
log2ublem2.2 𝐵 ∈ ℕ0
log2ublem2.3 𝐹 ∈ ℕ0
log2ublem2.4 𝑁 ∈ ℕ0
log2ublem2.5 (𝑁 − 1) = 𝐾
log2ublem2.6 (𝐵 + 𝐹) = 𝐺
log2ublem2.7 𝑀 ∈ ℕ0
log2ublem2.8 (𝑀 + 𝑁) = 3
log2ublem2.9 ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹)
Assertion
Ref Expression
log2ublem2 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺)
Distinct variable groups:   𝑛,𝐾   𝑛,𝑁
Allowed substitution hints:   𝐵(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝑀(𝑛)

Proof of Theorem log2ublem2
StepHypRef Expression
1 log2ublem2.1 . 2 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵)
2 fzfid 12728 . . . 4 (⊤ → (0...𝐾) ∈ Fin)
3 elfznn0 12390 . . . . . 6 (𝑛 ∈ (0...𝐾) → 𝑛 ∈ ℕ0)
43adantl 482 . . . . 5 ((⊤ ∧ 𝑛 ∈ (0...𝐾)) → 𝑛 ∈ ℕ0)
5 2re 11050 . . . . . 6 2 ∈ ℝ
6 3nn 11146 . . . . . . . 8 3 ∈ ℕ
7 2nn0 11269 . . . . . . . . . 10 2 ∈ ℕ0
8 nn0mulcl 11289 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
97, 8mpan 705 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
10 nn0p1nn 11292 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
119, 10syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
12 nnmulcl 11003 . . . . . . . 8 ((3 ∈ ℕ ∧ ((2 · 𝑛) + 1) ∈ ℕ) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
136, 11, 12sylancr 694 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
14 9nn 11152 . . . . . . . 8 9 ∈ ℕ
15 nnexpcl 12829 . . . . . . . 8 ((9 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
1614, 15mpan 705 . . . . . . 7 (𝑛 ∈ ℕ0 → (9↑𝑛) ∈ ℕ)
1713, 16nnmulcld 11028 . . . . . 6 (𝑛 ∈ ℕ0 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ)
18 nndivre 11016 . . . . . 6 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
195, 17, 18sylancr 694 . . . . 5 (𝑛 ∈ ℕ0 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
204, 19syl 17 . . . 4 ((⊤ ∧ 𝑛 ∈ (0...𝐾)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
212, 20fsumrecl 14414 . . 3 (⊤ → Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
2221trud 1490 . 2 Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ
23 log2ublem2.4 . . . . . 6 𝑁 ∈ ℕ0
247, 23nn0mulcli 11291 . . . . 5 (2 · 𝑁) ∈ ℕ0
25 nn0p1nn 11292 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ)
2624, 25ax-mp 5 . . . 4 ((2 · 𝑁) + 1) ∈ ℕ
276, 26nnmulcli 11004 . . 3 (3 · ((2 · 𝑁) + 1)) ∈ ℕ
28 nnexpcl 12829 . . . 4 ((9 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (9↑𝑁) ∈ ℕ)
2914, 23, 28mp2an 707 . . 3 (9↑𝑁) ∈ ℕ
3027, 29nnmulcli 11004 . 2 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℕ
31 log2ublem2.2 . . 3 𝐵 ∈ ℕ0
327, 31nn0mulcli 11291 . 2 (2 · 𝐵) ∈ ℕ0
33 log2ublem2.3 . . 3 𝐹 ∈ ℕ0
347, 33nn0mulcli 11291 . 2 (2 · 𝐹) ∈ ℕ0
35 nn0uz 11682 . . . . . . 7 0 = (ℤ‘0)
3623, 35eleqtri 2696 . . . . . 6 𝑁 ∈ (ℤ‘0)
3736a1i 11 . . . . 5 (⊤ → 𝑁 ∈ (ℤ‘0))
38 elfznn0 12390 . . . . . . 7 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℕ0)
3938adantl 482 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (0...𝑁)) → 𝑛 ∈ ℕ0)
4019recnd 10028 . . . . . 6 (𝑛 ∈ ℕ0 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
4139, 40syl 17 . . . . 5 ((⊤ ∧ 𝑛 ∈ (0...𝑁)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
42 oveq2 6623 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
4342oveq1d 6630 . . . . . . . 8 (𝑛 = 𝑁 → ((2 · 𝑛) + 1) = ((2 · 𝑁) + 1))
4443oveq2d 6631 . . . . . . 7 (𝑛 = 𝑁 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑁) + 1)))
45 oveq2 6623 . . . . . . 7 (𝑛 = 𝑁 → (9↑𝑛) = (9↑𝑁))
4644, 45oveq12d 6633 . . . . . 6 (𝑛 = 𝑁 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))
4746oveq2d 6631 . . . . 5 (𝑛 = 𝑁 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
4837, 41, 47fsumm1 14429 . . . 4 (⊤ → Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
4948trud 1490 . . 3 Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
50 log2ublem2.5 . . . . . 6 (𝑁 − 1) = 𝐾
5150oveq2i 6626 . . . . 5 (0...(𝑁 − 1)) = (0...𝐾)
5251sumeq1i 14378 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
5352oveq1i 6625 . . 3 𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))) = (Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
5449, 53eqtri 2643 . 2 Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
55 2cn 11051 . . . 4 2 ∈ ℂ
5631nn0cni 11264 . . . 4 𝐵 ∈ ℂ
5733nn0cni 11264 . . . 4 𝐹 ∈ ℂ
5855, 56, 57adddii 10010 . . 3 (2 · (𝐵 + 𝐹)) = ((2 · 𝐵) + (2 · 𝐹))
59 log2ublem2.6 . . . 4 (𝐵 + 𝐹) = 𝐺
6059oveq2i 6626 . . 3 (2 · (𝐵 + 𝐹)) = (2 · 𝐺)
6158, 60eqtr3i 2645 . 2 ((2 · 𝐵) + (2 · 𝐹)) = (2 · 𝐺)
62 7nn 11150 . . . . . . . . 9 7 ∈ ℕ
6362nnnn0i 11260 . . . . . . . 8 7 ∈ ℕ0
64 nnexpcl 12829 . . . . . . . 8 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
656, 63, 64mp2an 707 . . . . . . 7 (3↑7) ∈ ℕ
66 5nn 11148 . . . . . . . 8 5 ∈ ℕ
6766, 62nnmulcli 11004 . . . . . . 7 (5 · 7) ∈ ℕ
6865, 67nnmulcli 11004 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℕ
6968nnrei 10989 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℝ
7069, 5remulcli 10014 . . . 4 (((3↑7) · (5 · 7)) · 2) ∈ ℝ
7170leidi 10522 . . 3 (((3↑7) · (5 · 7)) · 2) ≤ (((3↑7) · (5 · 7)) · 2)
726nnnn0i 11260 . . . . . . . . . . . 12 3 ∈ ℕ0
73 nnexpcl 12829 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 3 ∈ ℕ0) → (9↑3) ∈ ℕ)
7414, 72, 73mp2an 707 . . . . . . . . . . 11 (9↑3) ∈ ℕ
7574nncni 10990 . . . . . . . . . 10 (9↑3) ∈ ℂ
7667nncni 10990 . . . . . . . . . 10 (5 · 7) ∈ ℂ
7775, 76mulcomi 10006 . . . . . . . . 9 ((9↑3) · (5 · 7)) = ((5 · 7) · (9↑3))
78 log2ublem2.8 . . . . . . . . . . . . 13 (𝑀 + 𝑁) = 3
79 log2ublem2.7 . . . . . . . . . . . . . . 15 𝑀 ∈ ℕ0
8079nn0cni 11264 . . . . . . . . . . . . . 14 𝑀 ∈ ℂ
8123nn0cni 11264 . . . . . . . . . . . . . 14 𝑁 ∈ ℂ
8280, 81addcomi 10187 . . . . . . . . . . . . 13 (𝑀 + 𝑁) = (𝑁 + 𝑀)
8378, 82eqtr3i 2645 . . . . . . . . . . . 12 3 = (𝑁 + 𝑀)
8483oveq2i 6626 . . . . . . . . . . 11 (9↑3) = (9↑(𝑁 + 𝑀))
8514nncni 10990 . . . . . . . . . . . 12 9 ∈ ℂ
86 expadd 12858 . . . . . . . . . . . 12 ((9 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (9↑(𝑁 + 𝑀)) = ((9↑𝑁) · (9↑𝑀)))
8785, 23, 79, 86mp3an 1421 . . . . . . . . . . 11 (9↑(𝑁 + 𝑀)) = ((9↑𝑁) · (9↑𝑀))
8884, 87eqtri 2643 . . . . . . . . . 10 (9↑3) = ((9↑𝑁) · (9↑𝑀))
8988oveq2i 6626 . . . . . . . . 9 ((5 · 7) · (9↑3)) = ((5 · 7) · ((9↑𝑁) · (9↑𝑀)))
9029nncni 10990 . . . . . . . . . 10 (9↑𝑁) ∈ ℂ
91 nnexpcl 12829 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (9↑𝑀) ∈ ℕ)
9214, 79, 91mp2an 707 . . . . . . . . . . 11 (9↑𝑀) ∈ ℕ
9392nncni 10990 . . . . . . . . . 10 (9↑𝑀) ∈ ℂ
9476, 90, 93mul12i 10191 . . . . . . . . 9 ((5 · 7) · ((9↑𝑁) · (9↑𝑀))) = ((9↑𝑁) · ((5 · 7) · (9↑𝑀)))
9577, 89, 943eqtri 2647 . . . . . . . 8 ((9↑3) · (5 · 7)) = ((9↑𝑁) · ((5 · 7) · (9↑𝑀)))
96 log2ublem2.9 . . . . . . . . 9 ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹)
9796oveq2i 6626 . . . . . . . 8 ((9↑𝑁) · ((5 · 7) · (9↑𝑀))) = ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹))
9895, 97eqtri 2643 . . . . . . 7 ((9↑3) · (5 · 7)) = ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹))
9998oveq2i 6626 . . . . . 6 (3 · ((9↑3) · (5 · 7))) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
100 df-7 11044 . . . . . . . . . 10 7 = (6 + 1)
101100oveq2i 6626 . . . . . . . . 9 (3↑7) = (3↑(6 + 1))
102 3cn 11055 . . . . . . . . . . 11 3 ∈ ℂ
103 6nn0 11273 . . . . . . . . . . 11 6 ∈ ℕ0
104 expp1 12823 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 6 ∈ ℕ0) → (3↑(6 + 1)) = ((3↑6) · 3))
105102, 103, 104mp2an 707 . . . . . . . . . 10 (3↑(6 + 1)) = ((3↑6) · 3)
106 expmul 12861 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(2 · 3)) = ((3↑2)↑3))
107102, 7, 72, 106mp3an 1421 . . . . . . . . . . . 12 (3↑(2 · 3)) = ((3↑2)↑3)
10855, 102mulcomi 10006 . . . . . . . . . . . . . 14 (2 · 3) = (3 · 2)
109 3t2e6 11139 . . . . . . . . . . . . . 14 (3 · 2) = 6
110108, 109eqtri 2643 . . . . . . . . . . . . 13 (2 · 3) = 6
111110oveq2i 6626 . . . . . . . . . . . 12 (3↑(2 · 3)) = (3↑6)
112 sq3 12917 . . . . . . . . . . . . 13 (3↑2) = 9
113112oveq1i 6625 . . . . . . . . . . . 12 ((3↑2)↑3) = (9↑3)
114107, 111, 1133eqtr3i 2651 . . . . . . . . . . 11 (3↑6) = (9↑3)
115114oveq1i 6625 . . . . . . . . . 10 ((3↑6) · 3) = ((9↑3) · 3)
116105, 115eqtri 2643 . . . . . . . . 9 (3↑(6 + 1)) = ((9↑3) · 3)
11775, 102mulcomi 10006 . . . . . . . . 9 ((9↑3) · 3) = (3 · (9↑3))
118101, 116, 1173eqtri 2647 . . . . . . . 8 (3↑7) = (3 · (9↑3))
119118oveq1i 6625 . . . . . . 7 ((3↑7) · (5 · 7)) = ((3 · (9↑3)) · (5 · 7))
120102, 75, 76mulassi 10009 . . . . . . 7 ((3 · (9↑3)) · (5 · 7)) = (3 · ((9↑3) · (5 · 7)))
121119, 120eqtri 2643 . . . . . 6 ((3↑7) · (5 · 7)) = (3 · ((9↑3) · (5 · 7)))
12226nncni 10990 . . . . . . . . 9 ((2 · 𝑁) + 1) ∈ ℂ
123102, 122, 90mul32i 10192 . . . . . . . 8 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) = ((3 · (9↑𝑁)) · ((2 · 𝑁) + 1))
124123oveq1i 6625 . . . . . . 7 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹) = (((3 · (9↑𝑁)) · ((2 · 𝑁) + 1)) · 𝐹)
125102, 90mulcli 10005 . . . . . . . 8 (3 · (9↑𝑁)) ∈ ℂ
126125, 122, 57mulassi 10009 . . . . . . 7 (((3 · (9↑𝑁)) · ((2 · 𝑁) + 1)) · 𝐹) = ((3 · (9↑𝑁)) · (((2 · 𝑁) + 1) · 𝐹))
127122, 57mulcli 10005 . . . . . . . 8 (((2 · 𝑁) + 1) · 𝐹) ∈ ℂ
128102, 90, 127mulassi 10009 . . . . . . 7 ((3 · (9↑𝑁)) · (((2 · 𝑁) + 1) · 𝐹)) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
129124, 126, 1283eqtri 2647 . . . . . 6 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
13099, 121, 1293eqtr4i 2653 . . . . 5 ((3↑7) · (5 · 7)) = (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹)
131130oveq2i 6626 . . . 4 (2 · ((3↑7) · (5 · 7))) = (2 · (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹))
13265nncni 10990 . . . . . 6 (3↑7) ∈ ℂ
133132, 76mulcli 10005 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℂ
134133, 55mulcomi 10006 . . . 4 (((3↑7) · (5 · 7)) · 2) = (2 · ((3↑7) · (5 · 7)))
13530nncni 10990 . . . . 5 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℂ
136135, 55, 57mul12i 10191 . . . 4 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹)) = (2 · (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹))
137131, 134, 1363eqtr4i 2653 . . 3 (((3↑7) · (5 · 7)) · 2) = (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹))
13871, 137breqtri 4648 . 2 (((3↑7) · (5 · 7)) · 2) ≤ (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹))
1391, 22, 7, 30, 32, 34, 54, 61, 138log2ublem1 24607 1 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wtru 1481  wcel 1987   class class class wbr 4623  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  cle 10035  cmin 10226   / cdiv 10644  cn 10980  2c2 11030  3c3 11031  5c5 11033  6c6 11034  7c7 11035  9c9 11037  0cn0 11252  cuz 11647  ...cfz 12284  cexp 12816  Σcsu 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367
This theorem is referenced by:  log2ublem3  24609
  Copyright terms: Public domain W3C validator