MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ub Structured version   Visualization version   GIF version

Theorem log2ub 24576
Description: log2 is less than 253 / 365. If written in decimal, this is because log2 = 0.693147... is less than 253/365 = 0.693151... , so this is a very tight bound, at five decimal places. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Assertion
Ref Expression
log2ub (log‘2) < (253 / 365)

Proof of Theorem log2ub
StepHypRef Expression
1 4m1e3 11082 . . . . . . . . 9 (4 − 1) = 3
21oveq2i 6615 . . . . . . . 8 (0...(4 − 1)) = (0...3)
32sumeq1i 14362 . . . . . . 7 Σ𝑛 ∈ (0...(4 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
43oveq2i 6615 . . . . . 6 ((log‘2) − Σ𝑛 ∈ (0...(4 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) = ((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
5 4nn0 11255 . . . . . . 7 4 ∈ ℕ0
6 log2tlbnd 24572 . . . . . . 7 (4 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(4 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 4) + 1)) · (9↑4)))))
75, 6ax-mp 5 . . . . . 6 ((log‘2) − Σ𝑛 ∈ (0...(4 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 4) + 1)) · (9↑4))))
84, 7eqeltrri 2695 . . . . 5 ((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 4) + 1)) · (9↑4))))
9 0re 9984 . . . . . 6 0 ∈ ℝ
10 3re 11038 . . . . . . 7 3 ∈ ℝ
11 4nn 11131 . . . . . . . . 9 4 ∈ ℕ
12 2nn0 11253 . . . . . . . . . 10 2 ∈ ℕ0
13 1nn 10975 . . . . . . . . . 10 1 ∈ ℕ
1412, 5, 13numnncl 11451 . . . . . . . . 9 ((2 · 4) + 1) ∈ ℕ
1511, 14nnmulcli 10988 . . . . . . . 8 (4 · ((2 · 4) + 1)) ∈ ℕ
16 9nn 11136 . . . . . . . . 9 9 ∈ ℕ
17 nnexpcl 12813 . . . . . . . . 9 ((9 ∈ ℕ ∧ 4 ∈ ℕ0) → (9↑4) ∈ ℕ)
1816, 5, 17mp2an 707 . . . . . . . 8 (9↑4) ∈ ℕ
1915, 18nnmulcli 10988 . . . . . . 7 ((4 · ((2 · 4) + 1)) · (9↑4)) ∈ ℕ
20 nndivre 11000 . . . . . . 7 ((3 ∈ ℝ ∧ ((4 · ((2 · 4) + 1)) · (9↑4)) ∈ ℕ) → (3 / ((4 · ((2 · 4) + 1)) · (9↑4))) ∈ ℝ)
2110, 19, 20mp2an 707 . . . . . 6 (3 / ((4 · ((2 · 4) + 1)) · (9↑4))) ∈ ℝ
229, 21elicc2i 12181 . . . . 5 (((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ↔ (((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ ℝ ∧ 0 ≤ ((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∧ ((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))))
238, 22mpbi 220 . . . 4 (((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ ℝ ∧ 0 ≤ ((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∧ ((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (3 / ((4 · ((2 · 4) + 1)) · (9↑4))))
2423simp3i 1070 . . 3 ((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))
25 2rp 11781 . . . . 5 2 ∈ ℝ+
26 relogcl 24226 . . . . 5 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
2725, 26ax-mp 5 . . . 4 (log‘2) ∈ ℝ
28 fzfid 12712 . . . . . 6 (⊤ → (0...3) ∈ Fin)
29 2re 11034 . . . . . . 7 2 ∈ ℝ
30 3nn 11130 . . . . . . . . 9 3 ∈ ℕ
31 elfznn0 12374 . . . . . . . . . . . 12 (𝑛 ∈ (0...3) → 𝑛 ∈ ℕ0)
3231adantl 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ (0...3)) → 𝑛 ∈ ℕ0)
33 nn0mulcl 11273 . . . . . . . . . . 11 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
3412, 32, 33sylancr 694 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ (0...3)) → (2 · 𝑛) ∈ ℕ0)
35 nn0p1nn 11276 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (0...3)) → ((2 · 𝑛) + 1) ∈ ℕ)
37 nnmulcl 10987 . . . . . . . . 9 ((3 ∈ ℕ ∧ ((2 · 𝑛) + 1) ∈ ℕ) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
3830, 36, 37sylancr 694 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (0...3)) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
39 nnexpcl 12813 . . . . . . . . 9 ((9 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
4016, 32, 39sylancr 694 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (0...3)) → (9↑𝑛) ∈ ℕ)
4138, 40nnmulcld 11012 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (0...3)) → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ)
42 nndivre 11000 . . . . . . 7 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
4329, 41, 42sylancr 694 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (0...3)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
4428, 43fsumrecl 14398 . . . . 5 (⊤ → Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
4544trud 1490 . . . 4 Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ
4627, 45, 21lesubadd2i 10532 . . 3 (((log‘2) − Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (3 / ((4 · ((2 · 4) + 1)) · (9↑4))) ↔ (log‘2) ≤ (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))))
4724, 46mpbi 220 . 2 (log‘2) ≤ (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4))))
48 log2ublem3 24575 . . . . 5 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ 53056
49 3nn0 11254 . . . . 5 3 ∈ ℕ0
50 5nn0 11256 . . . . . . . . 9 5 ∈ ℕ0
5150, 49deccl 11456 . . . . . . . 8 53 ∈ ℕ0
52 0nn0 11251 . . . . . . . 8 0 ∈ ℕ0
5351, 52deccl 11456 . . . . . . 7 530 ∈ ℕ0
5453, 50deccl 11456 . . . . . 6 5305 ∈ ℕ0
55 6nn0 11257 . . . . . 6 6 ∈ ℕ0
5654, 55deccl 11456 . . . . 5 53056 ∈ ℕ0
57 1nn0 11252 . . . . 5 1 ∈ ℕ0
58 eqid 2621 . . . . 5 𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) = (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4))))
59 6p1e7 11100 . . . . . 6 (6 + 1) = 7
60 eqid 2621 . . . . . 6 53056 = 53056
6154, 55, 59, 60decsuc 11479 . . . . 5 (53056 + 1) = 53057
62 5nn 11132 . . . . . . . . . 10 5 ∈ ℕ
63 7nn 11134 . . . . . . . . . 10 7 ∈ ℕ
6462, 63nnmulcli 10988 . . . . . . . . 9 (5 · 7) ∈ ℕ
6564nnrei 10973 . . . . . . . 8 (5 · 7) ∈ ℝ
6615nnrei 10973 . . . . . . . 8 (4 · ((2 · 4) + 1)) ∈ ℝ
67 6nn 11133 . . . . . . . . . 10 6 ∈ ℕ
68 5lt6 11148 . . . . . . . . . 10 5 < 6
6949, 50, 67, 68declt 11474 . . . . . . . . 9 35 < 36
70 7cn 11048 . . . . . . . . . 10 7 ∈ ℂ
71 5cn 11044 . . . . . . . . . 10 5 ∈ ℂ
72 7t5e35 11595 . . . . . . . . . 10 (7 · 5) = 35
7370, 71, 72mulcomli 9991 . . . . . . . . 9 (5 · 7) = 35
74 4cn 11042 . . . . . . . . . . . . . 14 4 ∈ ℂ
75 2cn 11035 . . . . . . . . . . . . . 14 2 ∈ ℂ
76 4t2e8 11125 . . . . . . . . . . . . . 14 (4 · 2) = 8
7774, 75, 76mulcomli 9991 . . . . . . . . . . . . 13 (2 · 4) = 8
7877oveq1i 6614 . . . . . . . . . . . 12 ((2 · 4) + 1) = (8 + 1)
79 8p1e9 11102 . . . . . . . . . . . 12 (8 + 1) = 9
8078, 79eqtri 2643 . . . . . . . . . . 11 ((2 · 4) + 1) = 9
8180oveq2i 6615 . . . . . . . . . 10 (4 · ((2 · 4) + 1)) = (4 · 9)
82 9cn 11052 . . . . . . . . . . 11 9 ∈ ℂ
83 9t4e36 11609 . . . . . . . . . . 11 (9 · 4) = 36
8482, 74, 83mulcomli 9991 . . . . . . . . . 10 (4 · 9) = 36
8581, 84eqtri 2643 . . . . . . . . 9 (4 · ((2 · 4) + 1)) = 36
8669, 73, 853brtr4i 4643 . . . . . . . 8 (5 · 7) < (4 · ((2 · 4) + 1))
8765, 66, 86ltleii 10104 . . . . . . 7 (5 · 7) ≤ (4 · ((2 · 4) + 1))
8818nngt0i 10998 . . . . . . . 8 0 < (9↑4)
8918nnrei 10973 . . . . . . . . 9 (9↑4) ∈ ℝ
9065, 66, 89lemul2i 10891 . . . . . . . 8 (0 < (9↑4) → ((5 · 7) ≤ (4 · ((2 · 4) + 1)) ↔ ((9↑4) · (5 · 7)) ≤ ((9↑4) · (4 · ((2 · 4) + 1)))))
9188, 90ax-mp 5 . . . . . . 7 ((5 · 7) ≤ (4 · ((2 · 4) + 1)) ↔ ((9↑4) · (5 · 7)) ≤ ((9↑4) · (4 · ((2 · 4) + 1))))
9287, 91mpbi 220 . . . . . 6 ((9↑4) · (5 · 7)) ≤ ((9↑4) · (4 · ((2 · 4) + 1)))
93 7nn0 11258 . . . . . . . . . 10 7 ∈ ℕ0
94 nnexpcl 12813 . . . . . . . . . 10 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
9530, 93, 94mp2an 707 . . . . . . . . 9 (3↑7) ∈ ℕ
9695nncni 10974 . . . . . . . 8 (3↑7) ∈ ℂ
9764nncni 10974 . . . . . . . 8 (5 · 7) ∈ ℂ
98 3cn 11039 . . . . . . . 8 3 ∈ ℂ
9996, 97, 98mul32i 10176 . . . . . . 7 (((3↑7) · (5 · 7)) · 3) = (((3↑7) · 3) · (5 · 7))
10074, 75mulcomi 9990 . . . . . . . . . . . 12 (4 · 2) = (2 · 4)
101 df-8 11029 . . . . . . . . . . . 12 8 = (7 + 1)
10276, 100, 1013eqtr3i 2651 . . . . . . . . . . 11 (2 · 4) = (7 + 1)
103102oveq2i 6615 . . . . . . . . . 10 (3↑(2 · 4)) = (3↑(7 + 1))
104 expmul 12845 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 4 ∈ ℕ0) → (3↑(2 · 4)) = ((3↑2)↑4))
10598, 12, 5, 104mp3an 1421 . . . . . . . . . 10 (3↑(2 · 4)) = ((3↑2)↑4)
106103, 105eqtr3i 2645 . . . . . . . . 9 (3↑(7 + 1)) = ((3↑2)↑4)
107 expp1 12807 . . . . . . . . . 10 ((3 ∈ ℂ ∧ 7 ∈ ℕ0) → (3↑(7 + 1)) = ((3↑7) · 3))
10898, 93, 107mp2an 707 . . . . . . . . 9 (3↑(7 + 1)) = ((3↑7) · 3)
109 sq3 12901 . . . . . . . . . 10 (3↑2) = 9
110109oveq1i 6614 . . . . . . . . 9 ((3↑2)↑4) = (9↑4)
111106, 108, 1103eqtr3i 2651 . . . . . . . 8 ((3↑7) · 3) = (9↑4)
112111oveq1i 6614 . . . . . . 7 (((3↑7) · 3) · (5 · 7)) = ((9↑4) · (5 · 7))
11399, 112eqtri 2643 . . . . . 6 (((3↑7) · (5 · 7)) · 3) = ((9↑4) · (5 · 7))
11415nncni 10974 . . . . . . . . 9 (4 · ((2 · 4) + 1)) ∈ ℂ
11518nncni 10974 . . . . . . . . 9 (9↑4) ∈ ℂ
116114, 115mulcomi 9990 . . . . . . . 8 ((4 · ((2 · 4) + 1)) · (9↑4)) = ((9↑4) · (4 · ((2 · 4) + 1)))
117116oveq1i 6614 . . . . . . 7 (((4 · ((2 · 4) + 1)) · (9↑4)) · 1) = (((9↑4) · (4 · ((2 · 4) + 1))) · 1)
118115, 114mulcli 9989 . . . . . . . 8 ((9↑4) · (4 · ((2 · 4) + 1))) ∈ ℂ
119118mulid1i 9986 . . . . . . 7 (((9↑4) · (4 · ((2 · 4) + 1))) · 1) = ((9↑4) · (4 · ((2 · 4) + 1)))
120117, 119eqtri 2643 . . . . . 6 (((4 · ((2 · 4) + 1)) · (9↑4)) · 1) = ((9↑4) · (4 · ((2 · 4) + 1)))
12192, 113, 1203brtr4i 4643 . . . . 5 (((3↑7) · (5 · 7)) · 3) ≤ (((4 · ((2 · 4) + 1)) · (9↑4)) · 1)
12248, 45, 49, 19, 56, 57, 58, 61, 121log2ublem1 24573 . . . 4 (((3↑7) · (5 · 7)) · (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4))))) ≤ 53057
12345, 21readdcli 9997 . . . . 5 𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ∈ ℝ
12454, 93deccl 11456 . . . . . 6 53057 ∈ ℕ0
125124nn0rei 11247 . . . . 5 53057 ∈ ℝ
12695, 64nnmulcli 10988 . . . . . . 7 ((3↑7) · (5 · 7)) ∈ ℕ
127126nnrei 10973 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℝ
128126nngt0i 10998 . . . . . 6 0 < ((3↑7) · (5 · 7))
129127, 128pm3.2i 471 . . . . 5 (((3↑7) · (5 · 7)) ∈ ℝ ∧ 0 < ((3↑7) · (5 · 7)))
130 lemuldiv2 10848 . . . . 5 (((Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ∈ ℝ ∧ 53057 ∈ ℝ ∧ (((3↑7) · (5 · 7)) ∈ ℝ ∧ 0 < ((3↑7) · (5 · 7)))) → ((((3↑7) · (5 · 7)) · (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4))))) ≤ 53057 ↔ (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ≤ (53057 / ((3↑7) · (5 · 7)))))
131123, 125, 129, 130mp3an 1421 . . . 4 ((((3↑7) · (5 · 7)) · (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4))))) ≤ 53057 ↔ (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ≤ (53057 / ((3↑7) · (5 · 7))))
132122, 131mpbi 220 . . 3 𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ≤ (53057 / ((3↑7) · (5 · 7)))
133 8nn0 11259 . . . . . . . . . . . . 13 8 ∈ ℕ0
13449, 133deccl 11456 . . . . . . . . . . . 12 38 ∈ ℕ0
135134, 93deccl 11456 . . . . . . . . . . 11 387 ∈ ℕ0
136135, 49deccl 11456 . . . . . . . . . 10 3873 ∈ ℕ0
137136, 57deccl 11456 . . . . . . . . 9 38731 ∈ ℕ0
138137, 55deccl 11456 . . . . . . . 8 387316 ∈ ℕ0
139137, 93deccl 11456 . . . . . . . 8 387317 ∈ ℕ0
140 1lt10 11625 . . . . . . . 8 1 < 10
141 6lt7 11153 . . . . . . . . 9 6 < 7
142137, 55, 63, 141declt 11474 . . . . . . . 8 387316 < 387317
143138, 139, 57, 93, 140, 142decltc 11476 . . . . . . 7 3873161 < 3873177
144 eqid 2621 . . . . . . . 8 73 = 73
14557, 50deccl 11456 . . . . . . . . . . 11 15 ∈ ℕ0
146 9nn0 11260 . . . . . . . . . . 11 9 ∈ ℕ0
147145, 146deccl 11456 . . . . . . . . . 10 159 ∈ ℕ0
148147, 57deccl 11456 . . . . . . . . 9 1591 ∈ ℕ0
149148, 93deccl 11456 . . . . . . . 8 15917 ∈ ℕ0
150 eqid 2621 . . . . . . . . 9 53057 = 53057
151 eqid 2621 . . . . . . . . 9 15917 = 15917
152 eqid 2621 . . . . . . . . . 10 5305 = 5305
153 eqid 2621 . . . . . . . . . . 11 1591 = 1591
154 ax-1cn 9938 . . . . . . . . . . . 12 1 ∈ ℂ
155 5p1e6 11099 . . . . . . . . . . . 12 (5 + 1) = 6
15671, 154, 155addcomli 10172 . . . . . . . . . . 11 (1 + 5) = 6
157147, 57, 50, 153, 156decaddi 11523 . . . . . . . . . 10 (1591 + 5) = 1596
15857, 55deccl 11456 . . . . . . . . . . 11 16 ∈ ℕ0
159 eqid 2621 . . . . . . . . . . 11 530 = 530
160 eqid 2621 . . . . . . . . . . . 12 159 = 159
161 eqid 2621 . . . . . . . . . . . . 13 15 = 15
16257, 50, 155, 161decsuc 11479 . . . . . . . . . . . 12 (15 + 1) = 16
163 9p4e13 11566 . . . . . . . . . . . 12 (9 + 4) = 13
164145, 146, 5, 160, 162, 49, 163decaddci 11524 . . . . . . . . . . 11 (159 + 4) = 163
165 eqid 2621 . . . . . . . . . . . 12 53 = 53
166158nn0cni 11248 . . . . . . . . . . . . 13 16 ∈ ℂ
167166addid1i 10167 . . . . . . . . . . . 12 (16 + 0) = 16
168 1p2e3 11096 . . . . . . . . . . . . . 14 (1 + 2) = 3
169168oveq2i 6615 . . . . . . . . . . . . 13 ((5 · 7) + (1 + 2)) = ((5 · 7) + 3)
170 5p3e8 11110 . . . . . . . . . . . . . 14 (5 + 3) = 8
17149, 50, 49, 73, 170decaddi 11523 . . . . . . . . . . . . 13 ((5 · 7) + 3) = 38
172169, 171eqtri 2643 . . . . . . . . . . . 12 ((5 · 7) + (1 + 2)) = 38
173 7t3e21 11593 . . . . . . . . . . . . . 14 (7 · 3) = 21
17470, 98, 173mulcomli 9991 . . . . . . . . . . . . 13 (3 · 7) = 21
175 6cn 11046 . . . . . . . . . . . . . 14 6 ∈ ℂ
176175, 154, 59addcomli 10172 . . . . . . . . . . . . 13 (1 + 6) = 7
17712, 57, 55, 174, 176decaddi 11523 . . . . . . . . . . . 12 ((3 · 7) + 6) = 27
17850, 49, 57, 55, 165, 167, 93, 93, 12, 172, 177decmac 11510 . . . . . . . . . . 11 ((53 · 7) + (16 + 0)) = 387
17970mul02i 10169 . . . . . . . . . . . . 13 (0 · 7) = 0
180179oveq1i 6614 . . . . . . . . . . . 12 ((0 · 7) + 3) = (0 + 3)
18198addid2i 10168 . . . . . . . . . . . . 13 (0 + 3) = 3
18249dec0h 11466 . . . . . . . . . . . . 13 3 = 03
183181, 182eqtri 2643 . . . . . . . . . . . 12 (0 + 3) = 03
184180, 183eqtri 2643 . . . . . . . . . . 11 ((0 · 7) + 3) = 03
18551, 52, 158, 49, 159, 164, 93, 49, 52, 178, 184decmac 11510 . . . . . . . . . 10 ((530 · 7) + (159 + 4)) = 3873
186 3p1e4 11097 . . . . . . . . . . 11 (3 + 1) = 4
187 6p5e11 11544 . . . . . . . . . . . 12 (6 + 5) = 11
188175, 71, 187addcomli 10172 . . . . . . . . . . 11 (5 + 6) = 11
18949, 50, 55, 73, 186, 57, 188decaddci 11524 . . . . . . . . . 10 ((5 · 7) + 6) = 41
19053, 50, 147, 55, 152, 157, 93, 57, 5, 185, 189decmac 11510 . . . . . . . . 9 ((5305 · 7) + (1591 + 5)) = 38731
191 7t7e49 11597 . . . . . . . . . 10 (7 · 7) = 49
192 4p1e5 11098 . . . . . . . . . 10 (4 + 1) = 5
193 9p7e16 11569 . . . . . . . . . 10 (9 + 7) = 16
1945, 146, 93, 191, 192, 55, 193decaddci 11524 . . . . . . . . 9 ((7 · 7) + 7) = 56
19554, 93, 148, 93, 150, 151, 93, 55, 50, 190, 194decmac 11510 . . . . . . . 8 ((53057 · 7) + 15917) = 387316
19612dec0h 11466 . . . . . . . . . 10 2 = 02
197154addid2i 10168 . . . . . . . . . . . 12 (0 + 1) = 1
19857dec0h 11466 . . . . . . . . . . . 12 1 = 01
199197, 198eqtri 2643 . . . . . . . . . . 11 (0 + 1) = 01
200 00id 10155 . . . . . . . . . . . . 13 (0 + 0) = 0
20152dec0h 11466 . . . . . . . . . . . . 13 0 = 00
202200, 201eqtri 2643 . . . . . . . . . . . 12 (0 + 0) = 00
203 5t3e15 11579 . . . . . . . . . . . . . 14 (5 · 3) = 15
204203oveq1i 6614 . . . . . . . . . . . . 13 ((5 · 3) + 0) = (15 + 0)
205145nn0cni 11248 . . . . . . . . . . . . . 14 15 ∈ ℂ
206205addid1i 10167 . . . . . . . . . . . . 13 (15 + 0) = 15
207204, 206eqtri 2643 . . . . . . . . . . . 12 ((5 · 3) + 0) = 15
208 3t3e9 11124 . . . . . . . . . . . . . 14 (3 · 3) = 9
209208oveq1i 6614 . . . . . . . . . . . . 13 ((3 · 3) + 0) = (9 + 0)
21082addid1i 10167 . . . . . . . . . . . . 13 (9 + 0) = 9
211209, 210eqtri 2643 . . . . . . . . . . . 12 ((3 · 3) + 0) = 9
21250, 49, 52, 52, 165, 202, 49, 207, 211decma 11508 . . . . . . . . . . 11 ((53 · 3) + (0 + 0)) = 159
21398mul02i 10169 . . . . . . . . . . . . 13 (0 · 3) = 0
214213oveq1i 6614 . . . . . . . . . . . 12 ((0 · 3) + 1) = (0 + 1)
215214, 199eqtri 2643 . . . . . . . . . . 11 ((0 · 3) + 1) = 01
21651, 52, 52, 57, 159, 199, 49, 57, 52, 212, 215decmac 11510 . . . . . . . . . 10 ((530 · 3) + (0 + 1)) = 1591
217 5p2e7 11109 . . . . . . . . . . 11 (5 + 2) = 7
21857, 50, 12, 203, 217decaddi 11523 . . . . . . . . . 10 ((5 · 3) + 2) = 17
21953, 50, 52, 12, 152, 196, 49, 93, 57, 216, 218decmac 11510 . . . . . . . . 9 ((5305 · 3) + 2) = 15917
22049, 54, 93, 150, 57, 12, 219, 173decmul1c 11531 . . . . . . . 8 (53057 · 3) = 159171
221124, 93, 49, 144, 57, 149, 195, 220decmul2c 11533 . . . . . . 7 (53057 · 73) = 3873161
22250, 50deccl 11456 . . . . . . . . . . 11 55 ∈ ℕ0
223222, 49deccl 11456 . . . . . . . . . 10 553 ∈ ℕ0
224223, 49deccl 11456 . . . . . . . . 9 5533 ∈ ℕ0
225224, 57deccl 11456 . . . . . . . 8 55331 ∈ ℕ0
22612, 50deccl 11456 . . . . . . . . . 10 25 ∈ ℕ0
227226, 49deccl 11456 . . . . . . . . 9 253 ∈ ℕ0
22812, 57deccl 11456 . . . . . . . . . 10 21 ∈ ℕ0
229228, 133deccl 11456 . . . . . . . . 9 218 ∈ ℕ0
23093, 12deccl 11456 . . . . . . . . . . 11 72 ∈ ℕ0
231 3t2e6 11123 . . . . . . . . . . . . 13 (3 · 2) = 6
23298, 75, 231mulcomli 9991 . . . . . . . . . . . 12 (2 · 3) = 6
233 3exp3 15722 . . . . . . . . . . . 12 (3↑3) = 27
23412, 93deccl 11456 . . . . . . . . . . . . 13 27 ∈ ℕ0
235 eqid 2621 . . . . . . . . . . . . 13 27 = 27
23657, 133deccl 11456 . . . . . . . . . . . . 13 18 ∈ ℕ0
237 eqid 2621 . . . . . . . . . . . . . 14 18 = 18
238 2t2e4 11121 . . . . . . . . . . . . . . . 16 (2 · 2) = 4
239238, 168oveq12i 6616 . . . . . . . . . . . . . . 15 ((2 · 2) + (1 + 2)) = (4 + 3)
240 4p3e7 11107 . . . . . . . . . . . . . . 15 (4 + 3) = 7
241239, 240eqtri 2643 . . . . . . . . . . . . . 14 ((2 · 2) + (1 + 2)) = 7
242 7t2e14 11592 . . . . . . . . . . . . . . 15 (7 · 2) = 14
243 1p1e2 11078 . . . . . . . . . . . . . . 15 (1 + 1) = 2
244 8cn 11050 . . . . . . . . . . . . . . . 16 8 ∈ ℂ
245 8p4e12 11558 . . . . . . . . . . . . . . . 16 (8 + 4) = 12
246244, 74, 245addcomli 10172 . . . . . . . . . . . . . . 15 (4 + 8) = 12
24757, 5, 133, 242, 243, 12, 246decaddci 11524 . . . . . . . . . . . . . 14 ((7 · 2) + 8) = 22
24812, 93, 57, 133, 235, 237, 12, 12, 12, 241, 247decmac 11510 . . . . . . . . . . . . 13 ((27 · 2) + 18) = 72
24970, 75, 242mulcomli 9991 . . . . . . . . . . . . . . 15 (2 · 7) = 14
250 4p4e8 11108 . . . . . . . . . . . . . . 15 (4 + 4) = 8
25157, 5, 5, 249, 250decaddi 11523 . . . . . . . . . . . . . 14 ((2 · 7) + 4) = 18
25293, 12, 93, 235, 146, 5, 251, 191decmul1c 11531 . . . . . . . . . . . . 13 (27 · 7) = 189
253234, 12, 93, 235, 146, 236, 248, 252decmul2c 11533 . . . . . . . . . . . 12 (27 · 27) = 729
25449, 49, 232, 233, 253numexp2x 15707 . . . . . . . . . . 11 (3↑6) = 729
255 eqid 2621 . . . . . . . . . . . 12 72 = 72
256232oveq1i 6614 . . . . . . . . . . . . 13 ((2 · 3) + 2) = (6 + 2)
257 6p2e8 11113 . . . . . . . . . . . . 13 (6 + 2) = 8
258256, 257eqtri 2643 . . . . . . . . . . . 12 ((2 · 3) + 2) = 8
25993, 12, 12, 255, 49, 173, 258decrmanc 11520 . . . . . . . . . . 11 ((72 · 3) + 2) = 218
260 9t3e27 11608 . . . . . . . . . . 11 (9 · 3) = 27
26149, 230, 146, 254, 93, 12, 259, 260decmul1c 11531 . . . . . . . . . 10 ((3↑6) · 3) = 2187
26249, 55, 59, 261numexpp1 15706 . . . . . . . . 9 (3↑7) = 2187
26357, 93deccl 11456 . . . . . . . . . 10 17 ∈ ℕ0
264263, 93deccl 11456 . . . . . . . . 9 177 ∈ ℕ0
265 eqid 2621 . . . . . . . . . 10 218 = 218
266 eqid 2621 . . . . . . . . . 10 177 = 177
26712, 52deccl 11456 . . . . . . . . . . 11 20 ∈ ℕ0
268267, 49deccl 11456 . . . . . . . . . 10 203 ∈ ℕ0
26912, 12deccl 11456 . . . . . . . . . . 11 22 ∈ ℕ0
270 eqid 2621 . . . . . . . . . . 11 21 = 21
271 eqid 2621 . . . . . . . . . . . 12 17 = 17
272 eqid 2621 . . . . . . . . . . . 12 203 = 203
273 eqid 2621 . . . . . . . . . . . . . 14 20 = 20
27475addid2i 10168 . . . . . . . . . . . . . 14 (0 + 2) = 2
275154addid1i 10167 . . . . . . . . . . . . . 14 (1 + 0) = 1
27652, 57, 12, 52, 198, 273, 274, 275decadd 11514 . . . . . . . . . . . . 13 (1 + 20) = 21
27712, 57, 243, 276decsuc 11479 . . . . . . . . . . . 12 ((1 + 20) + 1) = 22
278 7p3e10 11547 . . . . . . . . . . . 12 (7 + 3) = 10
27957, 93, 267, 49, 271, 272, 277, 278decaddc2 11519 . . . . . . . . . . 11 (17 + 203) = 220
280 eqid 2621 . . . . . . . . . . . 12 253 = 253
281 eqid 2621 . . . . . . . . . . . . 13 22 = 22
282 eqid 2621 . . . . . . . . . . . . 13 25 = 25
283 2p2e4 11088 . . . . . . . . . . . . 13 (2 + 2) = 4
28471, 75, 217addcomli 10172 . . . . . . . . . . . . 13 (2 + 5) = 7
28512, 12, 12, 50, 281, 282, 283, 284decadd 11514 . . . . . . . . . . . 12 (22 + 25) = 47
28650dec0h 11466 . . . . . . . . . . . . . 14 5 = 05
287192, 286eqtri 2643 . . . . . . . . . . . . 13 (4 + 1) = 05
288238, 197oveq12i 6616 . . . . . . . . . . . . . 14 ((2 · 2) + (0 + 1)) = (4 + 1)
289288, 192eqtri 2643 . . . . . . . . . . . . 13 ((2 · 2) + (0 + 1)) = 5
290 5t2e10 11578 . . . . . . . . . . . . . 14 (5 · 2) = 10
29171addid2i 10168 . . . . . . . . . . . . . 14 (0 + 5) = 5
29257, 52, 50, 290, 291decaddi 11523 . . . . . . . . . . . . 13 ((5 · 2) + 5) = 15
29312, 50, 52, 50, 282, 287, 12, 50, 57, 289, 292decmac 11510 . . . . . . . . . . . 12 ((25 · 2) + (4 + 1)) = 55
294231oveq1i 6614 . . . . . . . . . . . . 13 ((3 · 2) + 7) = (6 + 7)
295 7p6e13 11552 . . . . . . . . . . . . . 14 (7 + 6) = 13
29670, 175, 295addcomli 10172 . . . . . . . . . . . . 13 (6 + 7) = 13
297294, 296eqtri 2643 . . . . . . . . . . . 12 ((3 · 2) + 7) = 13
298226, 49, 5, 93, 280, 285, 12, 49, 57, 293, 297decmac 11510 . . . . . . . . . . 11 ((253 · 2) + (22 + 25)) = 553
299227nn0cni 11248 . . . . . . . . . . . . . 14 253 ∈ ℂ
300299mulid1i 9986 . . . . . . . . . . . . 13 (253 · 1) = 253
301300oveq1i 6614 . . . . . . . . . . . 12 ((253 · 1) + 0) = (253 + 0)
302299addid1i 10167 . . . . . . . . . . . 12 (253 + 0) = 253
303301, 302eqtri 2643 . . . . . . . . . . 11 ((253 · 1) + 0) = 253
30412, 57, 269, 52, 270, 279, 227, 49, 226, 298, 303decma2c 11512 . . . . . . . . . 10 ((253 · 21) + (17 + 203)) = 5533
30593dec0h 11466 . . . . . . . . . . 11 7 = 07
30674addid2i 10168 . . . . . . . . . . . . . 14 (0 + 4) = 4
307306oveq2i 6615 . . . . . . . . . . . . 13 ((2 · 8) + (0 + 4)) = ((2 · 8) + 4)
308 8t2e16 11598 . . . . . . . . . . . . . . 15 (8 · 2) = 16
309244, 75, 308mulcomli 9991 . . . . . . . . . . . . . 14 (2 · 8) = 16
310 6p4e10 11542 . . . . . . . . . . . . . 14 (6 + 4) = 10
31157, 55, 5, 309, 243, 310decaddci2 11525 . . . . . . . . . . . . 13 ((2 · 8) + 4) = 20
312307, 311eqtri 2643 . . . . . . . . . . . 12 ((2 · 8) + (0 + 4)) = 20
313 8t5e40 11601 . . . . . . . . . . . . . 14 (8 · 5) = 40
314244, 71, 313mulcomli 9991 . . . . . . . . . . . . 13 (5 · 8) = 40
3155, 52, 49, 314, 181decaddi 11523 . . . . . . . . . . . 12 ((5 · 8) + 3) = 43
31612, 50, 52, 49, 282, 183, 133, 49, 5, 312, 315decmac 11510 . . . . . . . . . . 11 ((25 · 8) + (0 + 3)) = 203
317 8t3e24 11599 . . . . . . . . . . . . 13 (8 · 3) = 24
318244, 98, 317mulcomli 9991 . . . . . . . . . . . 12 (3 · 8) = 24
319 2p1e3 11095 . . . . . . . . . . . 12 (2 + 1) = 3
320 7p4e11 11549 . . . . . . . . . . . . 13 (7 + 4) = 11
32170, 74, 320addcomli 10172 . . . . . . . . . . . 12 (4 + 7) = 11
32212, 5, 93, 318, 319, 57, 321decaddci 11524 . . . . . . . . . . 11 ((3 · 8) + 7) = 31
323226, 49, 52, 93, 280, 305, 133, 57, 49, 316, 322decmac 11510 . . . . . . . . . 10 ((253 · 8) + 7) = 2031
324228, 133, 263, 93, 265, 266, 227, 57, 268, 304, 323decma2c 11512 . . . . . . . . 9 ((253 · 218) + 177) = 55331
32557, 5, 49, 249, 240decaddi 11523 . . . . . . . . . . 11 ((2 · 7) + 3) = 17
32649, 50, 12, 73, 217decaddi 11523 . . . . . . . . . . 11 ((5 · 7) + 2) = 37
32712, 50, 12, 282, 93, 93, 49, 325, 326decrmac 11521 . . . . . . . . . 10 ((25 · 7) + 2) = 177
32893, 226, 49, 280, 57, 12, 327, 174decmul1c 11531 . . . . . . . . 9 (253 · 7) = 1771
329227, 229, 93, 262, 57, 264, 324, 328decmul2c 11533 . . . . . . . 8 (253 · (3↑7)) = 553311
330 eqid 2621 . . . . . . . . 9 55331 = 55331
331 eqid 2621 . . . . . . . . . 10 5533 = 5533
332 eqid 2621 . . . . . . . . . . 11 553 = 553
333 eqid 2621 . . . . . . . . . . . 12 55 = 55
334274, 196eqtri 2643 . . . . . . . . . . . 12 (0 + 2) = 02
335181oveq2i 6615 . . . . . . . . . . . . 13 ((5 · 7) + (0 + 3)) = ((5 · 7) + 3)
336335, 171eqtri 2643 . . . . . . . . . . . 12 ((5 · 7) + (0 + 3)) = 38
33750, 50, 52, 12, 333, 334, 93, 93, 49, 336, 326decmac 11510 . . . . . . . . . . 11 ((55 · 7) + (0 + 2)) = 387
33812, 57, 12, 174, 168decaddi 11523 . . . . . . . . . . 11 ((3 · 7) + 2) = 23
339222, 49, 52, 12, 332, 196, 93, 49, 12, 337, 338decmac 11510 . . . . . . . . . 10 ((553 · 7) + 2) = 3873
34093, 223, 49, 331, 57, 12, 339, 174decmul1c 11531 . . . . . . . . 9 (5533 · 7) = 38731
34170mulid2i 9987 . . . . . . . . 9 (1 · 7) = 7
34293, 224, 57, 330, 93, 340, 341decmul1 11529 . . . . . . . 8 (55331 · 7) = 387317
34393, 225, 57, 329, 93, 342, 341decmul1 11529 . . . . . . 7 ((253 · (3↑7)) · 7) = 3873177
344143, 221, 3433brtr4i 4643 . . . . . 6 (53057 · 73) < ((253 · (3↑7)) · 7)
34593, 49deccl 11456 . . . . . . . . 9 73 ∈ ℕ0
346124, 345nn0mulcli 11275 . . . . . . . 8 (53057 · 73) ∈ ℕ0
347346nn0rei 11247 . . . . . . 7 (53057 · 73) ∈ ℝ
34849, 93nn0expcli 12826 . . . . . . . . . 10 (3↑7) ∈ ℕ0
349227, 348nn0mulcli 11275 . . . . . . . . 9 (253 · (3↑7)) ∈ ℕ0
350349, 93nn0mulcli 11275 . . . . . . . 8 ((253 · (3↑7)) · 7) ∈ ℕ0
351350nn0rei 11247 . . . . . . 7 ((253 · (3↑7)) · 7) ∈ ℝ
35262nnrei 10973 . . . . . . 7 5 ∈ ℝ
35362nngt0i 10998 . . . . . . 7 0 < 5
354347, 351, 352, 353ltmul1ii 10896 . . . . . 6 ((53057 · 73) < ((253 · (3↑7)) · 7) ↔ ((53057 · 73) · 5) < (((253 · (3↑7)) · 7) · 5))
355344, 354mpbi 220 . . . . 5 ((53057 · 73) · 5) < (((253 · (3↑7)) · 7) · 5)
356124nn0cni 11248 . . . . . . 7 53057 ∈ ℂ
357345nn0cni 11248 . . . . . . 7 73 ∈ ℂ
358356, 357, 71mulassi 9993 . . . . . 6 ((53057 · 73) · 5) = (53057 · (73 · 5))
35949, 50, 155, 72decsuc 11479 . . . . . . . 8 ((7 · 5) + 1) = 36
36071, 98, 203mulcomli 9991 . . . . . . . 8 (3 · 5) = 15
36150, 93, 49, 144, 50, 57, 359, 360decmul1c 11531 . . . . . . 7 (73 · 5) = 365
362361oveq2i 6615 . . . . . 6 (53057 · (73 · 5)) = (53057 · 365)
363358, 362eqtri 2643 . . . . 5 ((53057 · 73) · 5) = (53057 · 365)
364299, 96mulcli 9989 . . . . . . 7 (253 · (3↑7)) ∈ ℂ
365364, 70, 71mulassi 9993 . . . . . 6 (((253 · (3↑7)) · 7) · 5) = ((253 · (3↑7)) · (7 · 5))
36670, 71mulcomi 9990 . . . . . . . 8 (7 · 5) = (5 · 7)
367366oveq2i 6615 . . . . . . 7 ((253 · (3↑7)) · (7 · 5)) = ((253 · (3↑7)) · (5 · 7))
368299, 96, 97mulassi 9993 . . . . . . 7 ((253 · (3↑7)) · (5 · 7)) = (253 · ((3↑7) · (5 · 7)))
369367, 368eqtri 2643 . . . . . 6 ((253 · (3↑7)) · (7 · 5)) = (253 · ((3↑7) · (5 · 7)))
370365, 369eqtri 2643 . . . . 5 (((253 · (3↑7)) · 7) · 5) = (253 · ((3↑7) · (5 · 7)))
371355, 363, 3703brtr3i 4642 . . . 4 (53057 · 365) < (253 · ((3↑7) · (5 · 7)))
37249, 55deccl 11456 . . . . . . . 8 36 ∈ ℕ0
373372, 62decnncl 11462 . . . . . . 7 365 ∈ ℕ
374373nnrei 10973 . . . . . 6 365 ∈ ℝ
375373nngt0i 10998 . . . . . 6 0 < 365
376374, 375pm3.2i 471 . . . . 5 (365 ∈ ℝ ∧ 0 < 365)
377227nn0rei 11247 . . . . 5 253 ∈ ℝ
378 lt2mul2div 10845 . . . . 5 (((53057 ∈ ℝ ∧ (365 ∈ ℝ ∧ 0 < 365)) ∧ (253 ∈ ℝ ∧ (((3↑7) · (5 · 7)) ∈ ℝ ∧ 0 < ((3↑7) · (5 · 7))))) → ((53057 · 365) < (253 · ((3↑7) · (5 · 7))) ↔ (53057 / ((3↑7) · (5 · 7))) < (253 / 365)))
379125, 376, 377, 129, 378mp4an 708 . . . 4 ((53057 · 365) < (253 · ((3↑7) · (5 · 7))) ↔ (53057 / ((3↑7) · (5 · 7))) < (253 / 365))
380371, 379mpbi 220 . . 3 (53057 / ((3↑7) · (5 · 7))) < (253 / 365)
381 nndivre 11000 . . . . 5 ((53057 ∈ ℝ ∧ ((3↑7) · (5 · 7)) ∈ ℕ) → (53057 / ((3↑7) · (5 · 7))) ∈ ℝ)
382125, 126, 381mp2an 707 . . . 4 (53057 / ((3↑7) · (5 · 7))) ∈ ℝ
383 nndivre 11000 . . . . 5 ((253 ∈ ℝ ∧ 365 ∈ ℕ) → (253 / 365) ∈ ℝ)
384377, 373, 383mp2an 707 . . . 4 (253 / 365) ∈ ℝ
385123, 382, 384lelttri 10108 . . 3 (((Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ≤ (53057 / ((3↑7) · (5 · 7))) ∧ (53057 / ((3↑7) · (5 · 7))) < (253 / 365)) → (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) < (253 / 365))
386132, 380, 385mp2an 707 . 2 𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) < (253 / 365)
38727, 123, 384lelttri 10108 . 2 (((log‘2) ≤ (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) ∧ (Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (3 / ((4 · ((2 · 4) + 1)) · (9↑4)))) < (253 / 365)) → (log‘2) < (253 / 365))
38847, 386, 387mp2an 707 1 (log‘2) < (253 / 365)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1480  wtru 1481  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  3c3 11015  4c4 11016  5c5 11017  6c6 11018  7c7 11019  8c8 11020  9c9 11021  0cn0 11236  cdc 11437  +crp 11776  [,]cicc 12120  ...cfz 12268  cexp 12800  Σcsu 14350  logclog 24205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-tan 14727  df-pi 14728  df-dvds 14908  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-ulm 24035  df-log 24207  df-atan 24494
This theorem is referenced by:  log2le1  24577  birthday  24581
  Copyright terms: Public domain W3C validator