MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2tlbnd Structured version   Visualization version   GIF version

Theorem log2tlbnd 24792
Description: Bound the error term in the series of log2cnv 24791. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
log2tlbnd (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
Distinct variable group:   𝑛,𝑁

Proof of Theorem log2tlbnd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11836 . . . . . 6 0 = (ℤ‘0)
2 0zd 11502 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
3 oveq2 6773 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
43oveq1d 6780 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((2 · 𝑘) + 1) = ((2 · 𝑛) + 1))
54oveq2d 6781 . . . . . . . . . 10 (𝑘 = 𝑛 → (3 · ((2 · 𝑘) + 1)) = (3 · ((2 · 𝑛) + 1)))
6 oveq2 6773 . . . . . . . . . 10 (𝑘 = 𝑛 → (9↑𝑘) = (9↑𝑛))
75, 6oveq12d 6783 . . . . . . . . 9 (𝑘 = 𝑛 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) = ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
87oveq2d 6781 . . . . . . . 8 (𝑘 = 𝑛 → (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
9 eqid 2724 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
10 ovex 6793 . . . . . . . 8 (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ V
118, 9, 10fvmpt 6396 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
1211adantl 473 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
13 2re 11203 . . . . . . . 8 2 ∈ ℝ
14 3nn 11299 . . . . . . . . . 10 3 ∈ ℕ
15 2nn0 11422 . . . . . . . . . . . 12 2 ∈ ℕ0
16 simpr 479 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
17 nn0mulcl 11442 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
1815, 16, 17sylancr 698 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
19 nn0p1nn 11445 . . . . . . . . . . 11 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2018, 19syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ)
21 nnmulcl 11156 . . . . . . . . . 10 ((3 ∈ ℕ ∧ ((2 · 𝑛) + 1) ∈ ℕ) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
2214, 20, 21sylancr 698 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
23 9nn 11305 . . . . . . . . . 10 9 ∈ ℕ
24 nnexpcl 12988 . . . . . . . . . 10 ((9 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
2523, 16, 24sylancr 698 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
2622, 25nnmulcld 11181 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ)
27 nndivre 11169 . . . . . . . 8 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
2813, 26, 27sylancr 698 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
2928recnd 10181 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
309log2cnv 24791 . . . . . . 7 seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ⇝ (log‘2)
3130a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ⇝ (log‘2))
321, 2, 12, 29, 31isumclim 14608 . . . . 5 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ℕ0 (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (log‘2))
33 eqid 2724 . . . . . 6 (ℤ𝑁) = (ℤ𝑁)
34 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
35 seqex 12918 . . . . . . . 8 seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ V
36 fvex 6314 . . . . . . . 8 (log‘2) ∈ V
3735, 36breldm 5436 . . . . . . 7 (seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ⇝ (log‘2) → seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ )
3830, 37mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ )
391, 33, 34, 12, 29, 38isumsplit 14692 . . . . 5 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ℕ0 (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))))
4032, 39eqtr3d 2760 . . . 4 (𝑁 ∈ ℕ0 → (log‘2) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))))
4140oveq1d 6780 . . 3 (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) = ((Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))))
42 fzfid 12887 . . . . 5 (𝑁 ∈ ℕ0 → (0...(𝑁 − 1)) ∈ Fin)
43 elfznn0 12547 . . . . . 6 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0)
4443, 29sylan2 492 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (0...(𝑁 − 1))) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
4542, 44fsumcl 14584 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
46 nn0z 11513 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
47 eluznn0 11871 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℕ0)
4847, 11syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
4947, 28syldan 488 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
5012, 29eqeltrd 2803 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) ∈ ℂ)
511, 34, 50iserex 14507 . . . . . . 7 (𝑁 ∈ ℕ0 → (seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ ↔ seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ ))
5238, 51mpbid 222 . . . . . 6 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ )
5333, 46, 48, 49, 52isumrecl 14616 . . . . 5 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
5453recnd 10181 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
5545, 54pncan2d 10507 . . 3 (𝑁 ∈ ℕ0 → ((Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) = Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
5641, 55eqtrd 2758 . 2 (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) = Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
5713a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 2 ∈ ℝ)
58 0le2 11224 . . . . . . 7 0 ≤ 2
5958a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 0 ≤ 2)
6026nnred 11148 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ)
6126nngt0d 11177 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
62 divge0 11005 . . . . . 6 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ ∧ 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) → 0 ≤ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
6357, 59, 60, 61, 62syl22anc 1440 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 0 ≤ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
6447, 63syldan 488 . . . 4 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 ≤ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
6533, 46, 48, 49, 52, 64isumge0 14617 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
66 oveq2 6773 . . . . . . . . . 10 (𝑘 = 𝑛 → ((1 / 9)↑𝑘) = ((1 / 9)↑𝑛))
6766oveq2d 6781 . . . . . . . . 9 (𝑘 = 𝑛 → ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
68 eqid 2724 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))
69 ovex 6793 . . . . . . . . 9 ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)) ∈ V
7067, 68, 69fvmpt 6396 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
7170adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
72 9cn 11221 . . . . . . . . . . 11 9 ∈ ℂ
7372a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 9 ∈ ℂ)
7423nnne0i 11168 . . . . . . . . . . 11 9 ≠ 0
7574a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 9 ≠ 0)
76 nn0z 11513 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
7776adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
7873, 75, 77exprecd 13131 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((1 / 9)↑𝑛) = (1 / (9↑𝑛)))
7978oveq2d 6781 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)) = ((2 / (3 · ((2 · 𝑁) + 1))) · (1 / (9↑𝑛))))
80 nn0mulcl 11442 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
8115, 80mpan 708 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℕ0)
82 nn0p1nn 11445 . . . . . . . . . . . . . 14 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ)
8381, 82syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ)
84 nnmulcl 11156 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ ((2 · 𝑁) + 1) ∈ ℕ) → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
8514, 83, 84sylancr 698 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
86 nndivre 11169 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (3 · ((2 · 𝑁) + 1)) ∈ ℕ) → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℝ)
8713, 85, 86sylancr 698 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℝ)
8887recnd 10181 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℂ)
8988adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℂ)
9025nncnd 11149 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℂ)
9125nnne0d 11178 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (9↑𝑛) ≠ 0)
9289, 90, 91divrecd 10917 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) / (9↑𝑛)) = ((2 / (3 · ((2 · 𝑁) + 1))) · (1 / (9↑𝑛))))
93 2cnd 11206 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 2 ∈ ℂ)
9485adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
9594nncnd 11149 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑁) + 1)) ∈ ℂ)
9694nnne0d 11178 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑁) + 1)) ≠ 0)
9793, 95, 90, 96, 91divdiv1d 10945 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) / (9↑𝑛)) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
9879, 92, 973eqtr2d 2764 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
9971, 98eqtrd 2758 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
10047, 99syldan 488 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
10194, 25nnmulcld 11181 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℕ)
102 nndivre 11169 . . . . . . 7 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℝ)
10313, 101, 102sylancr 698 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℝ)
10447, 103syldan 488 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℝ)
10581adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℕ0)
106105nn0red 11465 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℝ)
10715, 47, 17sylancr 698 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑛) ∈ ℕ0)
108107nn0red 11465 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑛) ∈ ℝ)
109 1red 10168 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 1 ∈ ℝ)
110 eluzle 11813 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → 𝑁𝑛)
111110adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑁𝑛)
112 nn0re 11414 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
113112adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
11447nn0red 11465 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℝ)
11513a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 2 ∈ ℝ)
116 2pos 11225 . . . . . . . . . . . 12 0 < 2
117116a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < 2)
118 lemul2 10989 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑁𝑛 ↔ (2 · 𝑁) ≤ (2 · 𝑛)))
119113, 114, 115, 117, 118syl112anc 1443 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (𝑁𝑛 ↔ (2 · 𝑁) ≤ (2 · 𝑛)))
120111, 119mpbid 222 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑁) ≤ (2 · 𝑛))
121106, 108, 109, 120leadd1dd 10754 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑁) + 1) ≤ ((2 · 𝑛) + 1))
12283adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑁) + 1) ∈ ℕ)
123122nnred 11148 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑁) + 1) ∈ ℝ)
12447, 20syldan 488 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑛) + 1) ∈ ℕ)
125124nnred 11148 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑛) + 1) ∈ ℝ)
126 3re 11207 . . . . . . . . . 10 3 ∈ ℝ
127126a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 3 ∈ ℝ)
128 3pos 11227 . . . . . . . . . 10 0 < 3
129128a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < 3)
130 lemul2 10989 . . . . . . . . 9 ((((2 · 𝑁) + 1) ∈ ℝ ∧ ((2 · 𝑛) + 1) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((2 · 𝑁) + 1) ≤ ((2 · 𝑛) + 1) ↔ (3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1))))
131123, 125, 127, 129, 130syl112anc 1443 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (((2 · 𝑁) + 1) ≤ ((2 · 𝑛) + 1) ↔ (3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1))))
132121, 131mpbid 222 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1)))
13385adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
134133nnred 11148 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑁) + 1)) ∈ ℝ)
13547, 22syldan 488 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
136135nnred 11148 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑛) + 1)) ∈ ℝ)
13723, 47, 24sylancr 698 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (9↑𝑛) ∈ ℕ)
138137nnred 11148 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (9↑𝑛) ∈ ℝ)
139137nngt0d 11177 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < (9↑𝑛))
140 lemul1 10988 . . . . . . . 8 (((3 · ((2 · 𝑁) + 1)) ∈ ℝ ∧ (3 · ((2 · 𝑛) + 1)) ∈ ℝ ∧ ((9↑𝑛) ∈ ℝ ∧ 0 < (9↑𝑛))) → ((3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1)) ↔ ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
141134, 136, 138, 139, 140syl112anc 1443 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1)) ↔ ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
142132, 141mpbid 222 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
14347, 101syldan 488 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℕ)
144143nnred 11148 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℝ)
145143nngt0d 11177 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)))
14647, 60syldan 488 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ)
14747, 61syldan 488 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
148 lediv2 11026 . . . . . . 7 (((((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℝ ∧ 0 < ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∧ (((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ ∧ 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ↔ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)))))
149144, 145, 146, 147, 115, 117, 148syl222anc 1455 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ↔ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)))))
150142, 149mpbid 222 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
151 9re 11220 . . . . . . . . . . . 12 9 ∈ ℝ
152151, 74rereccli 10903 . . . . . . . . . . 11 (1 / 9) ∈ ℝ
153152recni 10165 . . . . . . . . . 10 (1 / 9) ∈ ℂ
154153a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (1 / 9) ∈ ℂ)
155 0re 10153 . . . . . . . . . . . . 13 0 ∈ ℝ
156 9pos 11235 . . . . . . . . . . . . . 14 0 < 9
157151, 156recgt0ii 11042 . . . . . . . . . . . . 13 0 < (1 / 9)
158155, 152, 157ltleii 10273 . . . . . . . . . . . 12 0 ≤ (1 / 9)
159 absid 14156 . . . . . . . . . . . 12 (((1 / 9) ∈ ℝ ∧ 0 ≤ (1 / 9)) → (abs‘(1 / 9)) = (1 / 9))
160152, 158, 159mp2an 710 . . . . . . . . . . 11 (abs‘(1 / 9)) = (1 / 9)
161 1lt9 11342 . . . . . . . . . . . . 13 1 < 9
162 recgt1i 11033 . . . . . . . . . . . . 13 ((9 ∈ ℝ ∧ 1 < 9) → (0 < (1 / 9) ∧ (1 / 9) < 1))
163151, 161, 162mp2an 710 . . . . . . . . . . . 12 (0 < (1 / 9) ∧ (1 / 9) < 1)
164163simpri 481 . . . . . . . . . . 11 (1 / 9) < 1
165160, 164eqbrtri 4781 . . . . . . . . . 10 (abs‘(1 / 9)) < 1
166165a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (abs‘(1 / 9)) < 1)
167 eqid 2724 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))
168 ovex 6793 . . . . . . . . . . 11 ((1 / 9)↑𝑛) ∈ V
16966, 167, 168fvmpt 6396 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛) = ((1 / 9)↑𝑛))
17047, 169syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛) = ((1 / 9)↑𝑛))
171154, 166, 34, 170geolim2 14722 . . . . . . . 8 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))) ⇝ (((1 / 9)↑𝑁) / (1 − (1 / 9))))
17272a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 9 ∈ ℂ)
17374a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 9 ≠ 0)
174172, 173, 46exprecd 13131 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((1 / 9)↑𝑁) = (1 / (9↑𝑁)))
17572, 74dividi 10871 . . . . . . . . . . . . 13 (9 / 9) = 1
176175oveq1i 6775 . . . . . . . . . . . 12 ((9 / 9) − (1 / 9)) = (1 − (1 / 9))
177 ax-1cn 10107 . . . . . . . . . . . . . 14 1 ∈ ℂ
17872, 74pm3.2i 470 . . . . . . . . . . . . . 14 (9 ∈ ℂ ∧ 9 ≠ 0)
179 divsubdir 10834 . . . . . . . . . . . . . 14 ((9 ∈ ℂ ∧ 1 ∈ ℂ ∧ (9 ∈ ℂ ∧ 9 ≠ 0)) → ((9 − 1) / 9) = ((9 / 9) − (1 / 9)))
18072, 177, 178, 179mp3an 1537 . . . . . . . . . . . . 13 ((9 − 1) / 9) = ((9 / 9) − (1 / 9))
181 df-9 11199 . . . . . . . . . . . . . . . 16 9 = (8 + 1)
182181oveq1i 6775 . . . . . . . . . . . . . . 15 (9 − 1) = ((8 + 1) − 1)
183 8cn 11219 . . . . . . . . . . . . . . . 16 8 ∈ ℂ
184183, 177pncan3oi 10410 . . . . . . . . . . . . . . 15 ((8 + 1) − 1) = 8
185182, 184eqtri 2746 . . . . . . . . . . . . . 14 (9 − 1) = 8
186185oveq1i 6775 . . . . . . . . . . . . 13 ((9 − 1) / 9) = (8 / 9)
187180, 186eqtr3i 2748 . . . . . . . . . . . 12 ((9 / 9) − (1 / 9)) = (8 / 9)
188176, 187eqtr3i 2748 . . . . . . . . . . 11 (1 − (1 / 9)) = (8 / 9)
189188a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 − (1 / 9)) = (8 / 9))
190174, 189oveq12d 6783 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((1 / 9)↑𝑁) / (1 − (1 / 9))) = ((1 / (9↑𝑁)) / (8 / 9)))
191177a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
192 nnexpcl 12988 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (9↑𝑁) ∈ ℕ)
19323, 192mpan 708 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (9↑𝑁) ∈ ℕ)
194193nncnd 11149 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (9↑𝑁) ∈ ℂ)
195183, 72, 74divcli 10880 . . . . . . . . . . 11 (8 / 9) ∈ ℂ
196195a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (8 / 9) ∈ ℂ)
197193nnne0d 11178 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (9↑𝑁) ≠ 0)
198 8nn 11304 . . . . . . . . . . . . 13 8 ∈ ℕ
199198nnne0i 11168 . . . . . . . . . . . 12 8 ≠ 0
200183, 72, 199, 74divne0i 10886 . . . . . . . . . . 11 (8 / 9) ≠ 0
201200a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (8 / 9) ≠ 0)
202191, 194, 196, 197, 201divdiv32d 10939 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((1 / (9↑𝑁)) / (8 / 9)) = ((1 / (8 / 9)) / (9↑𝑁)))
203 recdiv 10844 . . . . . . . . . . . 12 (((8 ∈ ℂ ∧ 8 ≠ 0) ∧ (9 ∈ ℂ ∧ 9 ≠ 0)) → (1 / (8 / 9)) = (9 / 8))
204183, 199, 72, 74, 203mp4an 711 . . . . . . . . . . 11 (1 / (8 / 9)) = (9 / 8)
205204oveq1i 6775 . . . . . . . . . 10 ((1 / (8 / 9)) / (9↑𝑁)) = ((9 / 8) / (9↑𝑁))
206183a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 8 ∈ ℂ)
207199a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 8 ≠ 0)
208172, 206, 194, 207, 197divdiv1d 10945 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((9 / 8) / (9↑𝑁)) = (9 / (8 · (9↑𝑁))))
209205, 208syl5eq 2770 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((1 / (8 / 9)) / (9↑𝑁)) = (9 / (8 · (9↑𝑁))))
210190, 202, 2093eqtrd 2762 . . . . . . . 8 (𝑁 ∈ ℕ0 → (((1 / 9)↑𝑁) / (1 − (1 / 9))) = (9 / (8 · (9↑𝑁))))
211171, 210breqtrd 4786 . . . . . . 7 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))) ⇝ (9 / (8 · (9↑𝑁))))
212 expcl 12993 . . . . . . . . 9 (((1 / 9) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((1 / 9)↑𝑛) ∈ ℂ)
213153, 47, 212sylancr 698 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((1 / 9)↑𝑛) ∈ ℂ)
214170, 213eqeltrd 2803 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛) ∈ ℂ)
21547, 70syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
216170oveq2d 6781 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 / (3 · ((2 · 𝑁) + 1))) · ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛)) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
217215, 216eqtr4d 2761 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛)))
21833, 46, 88, 211, 214, 217isermulc2 14508 . . . . . 6 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ⇝ ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))))
219 seqex 12918 . . . . . . 7 seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ∈ V
220 ovex 6793 . . . . . . 7 ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) ∈ V
221219, 220breldm 5436 . . . . . 6 (seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ⇝ ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ∈ dom ⇝ )
222218, 221syl 17 . . . . 5 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ∈ dom ⇝ )
22333, 46, 48, 49, 100, 104, 150, 52, 222isumle 14696 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
224104recnd 10181 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℂ)
225 3cn 11208 . . . . . . . . . . . 12 3 ∈ ℂ
226 4cn 11211 . . . . . . . . . . . 12 4 ∈ ℂ
227 2cn 11204 . . . . . . . . . . . 12 2 ∈ ℂ
228 4ne0 11230 . . . . . . . . . . . 12 4 ≠ 0
229 3ne0 11228 . . . . . . . . . . . 12 3 ≠ 0
230 2ne0 11226 . . . . . . . . . . . 12 2 ≠ 0
231225, 226, 227, 225, 228, 229, 230divdivdivi 10901 . . . . . . . . . . 11 ((3 / 4) / (2 / 3)) = ((3 · 3) / (4 · 2))
232 3t3e9 11293 . . . . . . . . . . . 12 (3 · 3) = 9
233 4t2e8 11294 . . . . . . . . . . . 12 (4 · 2) = 8
234232, 233oveq12i 6777 . . . . . . . . . . 11 ((3 · 3) / (4 · 2)) = (9 / 8)
235231, 234eqtri 2746 . . . . . . . . . 10 ((3 / 4) / (2 / 3)) = (9 / 8)
236235oveq2i 6776 . . . . . . . . 9 ((2 / 3) · ((3 / 4) / (2 / 3))) = ((2 / 3) · (9 / 8))
237225, 226, 228divcli 10880 . . . . . . . . . 10 (3 / 4) ∈ ℂ
238227, 225, 229divcli 10880 . . . . . . . . . 10 (2 / 3) ∈ ℂ
239227, 225, 230, 229divne0i 10886 . . . . . . . . . 10 (2 / 3) ≠ 0
240237, 238, 239divcan2i 10881 . . . . . . . . 9 ((2 / 3) · ((3 / 4) / (2 / 3))) = (3 / 4)
241236, 240eqtr3i 2748 . . . . . . . 8 ((2 / 3) · (9 / 8)) = (3 / 4)
242241oveq1i 6775 . . . . . . 7 (((2 / 3) · (9 / 8)) / (((2 · 𝑁) + 1) · (9↑𝑁))) = ((3 / 4) / (((2 · 𝑁) + 1) · (9↑𝑁)))
243 2cnd 11206 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
244225a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 3 ∈ ℂ)
24583nncnd 11149 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℂ)
246229a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 3 ≠ 0)
24783nnne0d 11178 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ≠ 0)
248243, 244, 245, 246, 247divdiv1d 10945 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((2 / 3) / ((2 · 𝑁) + 1)) = (2 / (3 · ((2 · 𝑁) + 1))))
249248, 208oveq12d 6783 . . . . . . . 8 (𝑁 ∈ ℕ0 → (((2 / 3) / ((2 · 𝑁) + 1)) · ((9 / 8) / (9↑𝑁))) = ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))))
250238a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 / 3) ∈ ℂ)
25172, 183, 199divcli 10880 . . . . . . . . . 10 (9 / 8) ∈ ℂ
252251a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (9 / 8) ∈ ℂ)
253250, 245, 252, 194, 247, 197divmuldivd 10955 . . . . . . . 8 (𝑁 ∈ ℕ0 → (((2 / 3) / ((2 · 𝑁) + 1)) · ((9 / 8) / (9↑𝑁))) = (((2 / 3) · (9 / 8)) / (((2 · 𝑁) + 1) · (9↑𝑁))))
254249, 253eqtr3d 2760 . . . . . . 7 (𝑁 ∈ ℕ0 → ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) = (((2 / 3) · (9 / 8)) / (((2 · 𝑁) + 1) · (9↑𝑁))))
255226a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 4 ∈ ℂ)
256255, 245, 194mulassd 10176 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)) = (4 · (((2 · 𝑁) + 1) · (9↑𝑁))))
257256oveq2d 6781 . . . . . . . 8 (𝑁 ∈ ℕ0 → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) = (3 / (4 · (((2 · 𝑁) + 1) · (9↑𝑁)))))
25883, 193nnmulcld 11181 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) · (9↑𝑁)) ∈ ℕ)
259258nncnd 11149 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) · (9↑𝑁)) ∈ ℂ)
260228a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 4 ≠ 0)
261258nnne0d 11178 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) · (9↑𝑁)) ≠ 0)
262244, 255, 259, 260, 261divdiv1d 10945 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((3 / 4) / (((2 · 𝑁) + 1) · (9↑𝑁))) = (3 / (4 · (((2 · 𝑁) + 1) · (9↑𝑁)))))
263257, 262eqtr4d 2761 . . . . . . 7 (𝑁 ∈ ℕ0 → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) = ((3 / 4) / (((2 · 𝑁) + 1) · (9↑𝑁))))
264242, 254, 2633eqtr4a 2784 . . . . . 6 (𝑁 ∈ ℕ0 → ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) = (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
265218, 264breqtrd 4786 . . . . 5 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ⇝ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
26633, 46, 100, 224, 265isumclim 14608 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) = (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
267223, 266breqtrd 4786 . . 3 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
268 4nn 11300 . . . . . . 7 4 ∈ ℕ
269 nnmulcl 11156 . . . . . . 7 ((4 ∈ ℕ ∧ ((2 · 𝑁) + 1) ∈ ℕ) → (4 · ((2 · 𝑁) + 1)) ∈ ℕ)
270268, 83, 269sylancr 698 . . . . . 6 (𝑁 ∈ ℕ0 → (4 · ((2 · 𝑁) + 1)) ∈ ℕ)
271270, 193nnmulcld 11181 . . . . 5 (𝑁 ∈ ℕ0 → ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℕ)
272 nndivre 11169 . . . . 5 ((3 ∈ ℝ ∧ ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℕ) → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) ∈ ℝ)
273126, 271, 272sylancr 698 . . . 4 (𝑁 ∈ ℕ0 → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) ∈ ℝ)
274 elicc2 12352 . . . 4 ((0 ∈ ℝ ∧ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) ∈ ℝ) → (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))) ↔ (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∧ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))))
275155, 273, 274sylancr 698 . . 3 (𝑁 ∈ ℕ0 → (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))) ↔ (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∧ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))))
27653, 65, 267, 275mpbir3and 1382 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
27756, 276eqeltrd 2803 1 (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  cmpt 4837  dom cdm 5218  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  cn 11133  2c2 11183  3c3 11184  4c4 11185  8c8 11189  9c9 11190  0cn0 11405  cz 11490  cuz 11800  [,]cicc 12292  ...cfz 12440  seqcseq 12916  cexp 12975  abscabs 14094  cli 14335  Σcsu 14536  logclog 24421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-xnn0 11477  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-tan 14922  df-pi 14923  df-dvds 15104  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-cmp 21313  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-ulm 24251  df-log 24423  df-atan 24714
This theorem is referenced by:  log2ub  24796
  Copyright terms: Public domain W3C validator