MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Structured version   Visualization version   GIF version

Theorem log2cnv 24716
Description: Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
Assertion
Ref Expression
log2cnv seq0( + , 𝐹) ⇝ (log‘2)

Proof of Theorem log2cnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11760 . . . 4 0 = (ℤ‘0)
2 0zd 11427 . . . 4 (⊤ → 0 ∈ ℤ)
3 2cn 11129 . . . . . 6 2 ∈ ℂ
4 ax-icn 10033 . . . . . 6 i ∈ ℂ
5 ine0 10503 . . . . . 6 i ≠ 0
63, 4, 5divcli 10805 . . . . 5 (2 / i) ∈ ℂ
76a1i 11 . . . 4 (⊤ → (2 / i) ∈ ℂ)
8 3cn 11133 . . . . . . 7 3 ∈ ℂ
9 3ne0 11153 . . . . . . 7 3 ≠ 0
104, 8, 9divcli 10805 . . . . . 6 (i / 3) ∈ ℂ
11 absdiv 14079 . . . . . . . . 9 ((i ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (abs‘(i / 3)) = ((abs‘i) / (abs‘3)))
124, 8, 9, 11mp3an 1464 . . . . . . . 8 (abs‘(i / 3)) = ((abs‘i) / (abs‘3))
13 absi 14070 . . . . . . . . 9 (abs‘i) = 1
14 3re 11132 . . . . . . . . . 10 3 ∈ ℝ
15 0re 10078 . . . . . . . . . . 11 0 ∈ ℝ
16 3pos 11152 . . . . . . . . . . 11 0 < 3
1715, 14, 16ltleii 10198 . . . . . . . . . 10 0 ≤ 3
18 absid 14080 . . . . . . . . . 10 ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3)
1914, 17, 18mp2an 708 . . . . . . . . 9 (abs‘3) = 3
2013, 19oveq12i 6702 . . . . . . . 8 ((abs‘i) / (abs‘3)) = (1 / 3)
2112, 20eqtri 2673 . . . . . . 7 (abs‘(i / 3)) = (1 / 3)
22 1lt3 11234 . . . . . . . 8 1 < 3
23 recgt1 10957 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
2414, 16, 23mp2an 708 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
2522, 24mpbi 220 . . . . . . 7 (1 / 3) < 1
2621, 25eqbrtri 4706 . . . . . 6 (abs‘(i / 3)) < 1
27 eqid 2651 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2827atantayl3 24711 . . . . . 6 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
2910, 26, 28mp2an 708 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3))
3029a1i 11 . . . 4 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
31 oveq2 6698 . . . . . . . . 9 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
32 oveq2 6698 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
3332oveq1d 6705 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
3433oveq2d 6706 . . . . . . . . . 10 (𝑛 = 𝑘 → ((i / 3)↑((2 · 𝑛) + 1)) = ((i / 3)↑((2 · 𝑘) + 1)))
3534, 33oveq12d 6708 . . . . . . . . 9 (𝑛 = 𝑘 → (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)) = (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
3631, 35oveq12d 6708 . . . . . . . 8 (𝑛 = 𝑘 → ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
37 ovex 6718 . . . . . . . 8 ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ V
3836, 27, 37fvmpt 6321 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
394a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → i ∈ ℂ)
408a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ∈ ℂ)
419a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ≠ 0)
42 2nn0 11347 . . . . . . . . . . . . . 14 2 ∈ ℕ0
43 nn0mulcl 11367 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
4442, 43mpan 706 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
45 peano2nn0 11371 . . . . . . . . . . . . 13 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4739, 40, 41, 46expdivd 13062 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) = ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1))))
4847oveq2d 6706 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
49 neg1cn 11162 . . . . . . . . . . . 12 -1 ∈ ℂ
50 expcl 12918 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5149, 50mpan 706 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ)
52 expcl 12918 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
534, 46, 52sylancr 696 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
54 3nn 11224 . . . . . . . . . . . . 13 3 ∈ ℕ
55 nnexpcl 12913 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5654, 46, 55sylancr 696 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5756nncnd 11074 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℂ)
5856nnne0d 11103 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ≠ 0)
5951, 53, 57, 58divassd 10874 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
60 expp1 12907 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
614, 44, 60sylancr 696 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
62 expmul 12945 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
634, 42, 62mp3an12 1454 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
64 i2 13005 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
6564oveq1i 6700 . . . . . . . . . . . . . . . 16 ((i↑2)↑𝑘) = (-1↑𝑘)
6663, 65syl6eq 2701 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = (-1↑𝑘))
6766oveq1d 6705 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((i↑(2 · 𝑘)) · i) = ((-1↑𝑘) · i))
6861, 67eqtrd 2685 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((-1↑𝑘) · i))
6968oveq2d 6706 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7051, 51, 39mulassd 10101 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7149a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
72 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
7371, 72, 72expaddd 13050 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = ((-1↑𝑘) · (-1↑𝑘)))
74 expmul 12945 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
7549, 42, 74mp3an12 1454 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
76 neg1sqe1 12999 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
7776oveq1i 6700 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑𝑘) = (1↑𝑘)
7875, 77syl6eq 2701 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (1↑𝑘))
79 nn0cn 11340 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
80792timesd 11313 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 + 𝑘))
8180oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (-1↑(𝑘 + 𝑘)))
82 nn0z 11438 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
83 1exp 12929 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
8482, 83syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (1↑𝑘) = 1)
8578, 81, 843eqtr3d 2693 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = 1)
8673, 85eqtr3d 2687 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (-1↑𝑘)) = 1)
8786oveq1d 6705 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = (1 · i))
884mulid2i 10081 . . . . . . . . . . . . 13 (1 · i) = i
8987, 88syl6eq 2701 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = i)
9069, 70, 893eqtr2d 2691 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = i)
9190oveq1d 6705 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9248, 59, 913eqtr2d 2691 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9392oveq1d 6705 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)))
94 expcl 12918 . . . . . . . . . 10 (((i / 3) ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
9510, 46, 94sylancr 696 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
96 nn0p1nn 11370 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9744, 96syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9897nncnd 11074 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
9997nnne0d 11103 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ≠ 0)
10051, 95, 98, 99divassd 10874 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
10139, 57, 98, 58, 99divdiv1d 10870 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10293, 100, 1013eqtr3d 2693 . . . . . . 7 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10357, 98mulcomd 10099 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1)) = (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))))
104103oveq2d 6706 . . . . . . 7 (𝑘 ∈ ℕ0 → (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10538, 102, 1043eqtrd 2689 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10697, 56nnmulcld 11106 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℕ)
107106nncnd 11074 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℂ)
108106nnne0d 11103 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ≠ 0)
10939, 107, 108divcld 10839 . . . . . 6 (𝑘 ∈ ℕ0 → (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))) ∈ ℂ)
110105, 109eqeltrd 2730 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
111110adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
11233oveq2d 6706 . . . . . . . . 9 (𝑛 = 𝑘 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑘) + 1)))
113 oveq2 6698 . . . . . . . . 9 (𝑛 = 𝑘 → (9↑𝑛) = (9↑𝑘))
114112, 113oveq12d 6708 . . . . . . . 8 (𝑛 = 𝑘 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
115114oveq2d 6706 . . . . . . 7 (𝑛 = 𝑘 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
116 log2cnv.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
117 ovex 6718 . . . . . . 7 (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ V
118115, 116, 117fvmpt 6321 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
119 expp1 12907 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
1208, 44, 119sylancr 696 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
121 expmul 12945 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
1228, 42, 121mp3an12 1454 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
123 sq3 13001 . . . . . . . . . . . . . . . . 17 (3↑2) = 9
124123oveq1i 6700 . . . . . . . . . . . . . . . 16 ((3↑2)↑𝑘) = (9↑𝑘)
125122, 124syl6eq 2701 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = (9↑𝑘))
126125oveq1d 6705 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((3↑(2 · 𝑘)) · 3) = ((9↑𝑘) · 3))
127 9nn 11230 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
128 nnexpcl 12913 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (9↑𝑘) ∈ ℕ)
129127, 128mpan 706 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℕ)
130129nncnd 11074 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℂ)
131 mulcom 10060 . . . . . . . . . . . . . . 15 (((9↑𝑘) ∈ ℂ ∧ 3 ∈ ℂ) → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
132130, 8, 131sylancl 695 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
133120, 126, 1323eqtrd 2689 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = (3 · (9↑𝑘)))
13490, 133oveq12d 6708 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
13548, 59, 1343eqtr2d 2691 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
136135oveq1d 6705 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)))
137 nnmulcl 11081 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ (9↑𝑘) ∈ ℕ) → (3 · (9↑𝑘)) ∈ ℕ)
13854, 129, 137sylancr 696 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℕ)
139138nncnd 11074 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℂ)
140138nnne0d 11103 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ≠ 0)
14139, 139, 98, 140, 99divdiv1d 10870 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
142136, 100, 1413eqtr3d 2693 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
14340, 130, 98mul32d 10284 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
144143oveq2d 6706 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
14538, 142, 1443eqtrd 2689 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
146145oveq2d 6706 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
147 nnmulcl 11081 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
14854, 97, 147sylancr 696 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
149148, 129nnmulcld 11106 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℕ)
150149nncnd 11074 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℂ)
151149nnne0d 11103 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ≠ 0)
15239, 150, 151divcld 10839 . . . . . . . 8 (𝑘 ∈ ℕ0 → (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ)
153 mulcom 10060 . . . . . . . 8 (((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ ∧ (2 / i) ∈ ℂ) → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
154152, 6, 153sylancl 695 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
1553a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
1565a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → i ≠ 0)
157155, 39, 150, 156, 151dmdcand 10868 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
158146, 154, 1573eqtr2d 2691 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
159118, 158eqtr4d 2688 . . . . 5 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
160159adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
1611, 2, 7, 30, 111, 160isermulc2 14432 . . 3 (⊤ → seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3))))
162161trud 1533 . 2 seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3)))
163 bndatandm 24701 . . . . . . . 8 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → (i / 3) ∈ dom arctan)
16410, 26, 163mp2an 708 . . . . . . 7 (i / 3) ∈ dom arctan
165 atanval 24656 . . . . . . 7 ((i / 3) ∈ dom arctan → (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))))
166164, 165ax-mp 5 . . . . . 6 (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))))
167 df-4 11119 . . . . . . . . . . . . 13 4 = (3 + 1)
168167oveq1i 6700 . . . . . . . . . . . 12 (4 / 3) = ((3 + 1) / 3)
169 ax-1cn 10032 . . . . . . . . . . . . 13 1 ∈ ℂ
1708, 169, 8, 9divdiri 10820 . . . . . . . . . . . 12 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
1718, 9dividi 10796 . . . . . . . . . . . . 13 (3 / 3) = 1
172171oveq1i 6700 . . . . . . . . . . . 12 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
173168, 170, 1723eqtri 2677 . . . . . . . . . . 11 (4 / 3) = (1 + (1 / 3))
174169, 8, 9divcli 10805 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
175169, 174subnegi 10398 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 + (1 / 3))
176 divneg 10757 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(1 / 3) = (-1 / 3))
177169, 8, 9, 176mp3an 1464 . . . . . . . . . . . . 13 -(1 / 3) = (-1 / 3)
178 ixi 10694 . . . . . . . . . . . . . 14 (i · i) = -1
179178oveq1i 6700 . . . . . . . . . . . . 13 ((i · i) / 3) = (-1 / 3)
1804, 4, 8, 9divassi 10819 . . . . . . . . . . . . 13 ((i · i) / 3) = (i · (i / 3))
181177, 179, 1803eqtr2i 2679 . . . . . . . . . . . 12 -(1 / 3) = (i · (i / 3))
182181oveq2i 6701 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 − (i · (i / 3)))
183173, 175, 1823eqtr2ri 2680 . . . . . . . . . 10 (1 − (i · (i / 3))) = (4 / 3)
184183fveq2i 6232 . . . . . . . . 9 (log‘(1 − (i · (i / 3)))) = (log‘(4 / 3))
1858, 9pm3.2i 470 . . . . . . . . . . . . 13 (3 ∈ ℂ ∧ 3 ≠ 0)
186 divsubdir 10759 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
1878, 169, 185, 186mp3an 1464 . . . . . . . . . . . 12 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
188 3m1e2 11175 . . . . . . . . . . . . 13 (3 − 1) = 2
189188oveq1i 6700 . . . . . . . . . . . 12 ((3 − 1) / 3) = (2 / 3)
190171oveq1i 6700 . . . . . . . . . . . 12 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
191187, 189, 1903eqtr3i 2681 . . . . . . . . . . 11 (2 / 3) = (1 − (1 / 3))
192169, 174negsubi 10397 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 − (1 / 3))
193181oveq2i 6701 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 + (i · (i / 3)))
194191, 192, 1933eqtr2ri 2680 . . . . . . . . . 10 (1 + (i · (i / 3))) = (2 / 3)
195194fveq2i 6232 . . . . . . . . 9 (log‘(1 + (i · (i / 3)))) = (log‘(2 / 3))
196184, 195oveq12i 6702 . . . . . . . 8 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
197 4re 11135 . . . . . . . . . . 11 4 ∈ ℝ
198 4pos 11154 . . . . . . . . . . 11 0 < 4
199197, 198elrpii 11873 . . . . . . . . . 10 4 ∈ ℝ+
20014, 16elrpii 11873 . . . . . . . . . 10 3 ∈ ℝ+
201 rpdivcl 11894 . . . . . . . . . 10 ((4 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (4 / 3) ∈ ℝ+)
202199, 200, 201mp2an 708 . . . . . . . . 9 (4 / 3) ∈ ℝ+
203 2rp 11875 . . . . . . . . . 10 2 ∈ ℝ+
204 rpdivcl 11894 . . . . . . . . . 10 ((2 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (2 / 3) ∈ ℝ+)
205203, 200, 204mp2an 708 . . . . . . . . 9 (2 / 3) ∈ ℝ+
206 relogdiv 24384 . . . . . . . . 9 (((4 / 3) ∈ ℝ+ ∧ (2 / 3) ∈ ℝ+) → (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3))))
207202, 205, 206mp2an 708 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
208 4cn 11136 . . . . . . . . . . 11 4 ∈ ℂ
209 2cnne0 11280 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 ≠ 0)
210 divcan7 10772 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((4 / 3) / (2 / 3)) = (4 / 2))
211208, 209, 185, 210mp3an 1464 . . . . . . . . . 10 ((4 / 3) / (2 / 3)) = (4 / 2)
212 4d2e2 11222 . . . . . . . . . 10 (4 / 2) = 2
213211, 212eqtri 2673 . . . . . . . . 9 ((4 / 3) / (2 / 3)) = 2
214213fveq2i 6232 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = (log‘2)
215196, 207, 2143eqtr2i 2679 . . . . . . 7 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = (log‘2)
216215oveq2i 6701 . . . . . 6 ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))) = ((i / 2) · (log‘2))
217166, 216eqtri 2673 . . . . 5 (arctan‘(i / 3)) = ((i / 2) · (log‘2))
218217oveq2i 6701 . . . 4 ((2 / i) · (arctan‘(i / 3))) = ((2 / i) · ((i / 2) · (log‘2)))
219 2ne0 11151 . . . . . 6 2 ≠ 0
2204, 3, 219divcli 10805 . . . . 5 (i / 2) ∈ ℂ
221 logcl 24360 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0) → (log‘2) ∈ ℂ)
2223, 219, 221mp2an 708 . . . . 5 (log‘2) ∈ ℂ
2236, 220, 222mulassi 10087 . . . 4 (((2 / i) · (i / 2)) · (log‘2)) = ((2 / i) · ((i / 2) · (log‘2)))
224218, 223eqtr4i 2676 . . 3 ((2 / i) · (arctan‘(i / 3))) = (((2 / i) · (i / 2)) · (log‘2))
225 divcan6 10770 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((2 / i) · (i / 2)) = 1)
2263, 219, 4, 5, 225mp4an 709 . . . 4 ((2 / i) · (i / 2)) = 1
227226oveq1i 6700 . . 3 (((2 / i) · (i / 2)) · (log‘2)) = (1 · (log‘2))
228222mulid2i 10081 . . 3 (1 · (log‘2)) = (log‘2)
229224, 227, 2283eqtri 2677 . 2 ((2 / i) · (arctan‘(i / 3))) = (log‘2)
230162, 229breqtri 4710 1 seq0( + , 𝐹) ⇝ (log‘2)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wtru 1524  wcel 2030  wne 2823   class class class wbr 4685  cmpt 4762  dom cdm 5143  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  ici 9976   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  9c9 11115  0cn0 11330  cz 11415  +crp 11870  seqcseq 12841  cexp 12900  abscabs 14018  cli 14259  logclog 24346  arctancatan 24636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-tan 14846  df-pi 14847  df-dvds 15028  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-ulm 24176  df-log 24348  df-atan 24639
This theorem is referenced by:  log2tlbnd  24717
  Copyright terms: Public domain W3C validator