![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > locfintop | Structured version Visualization version GIF version |
Description: A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
locfintop | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2770 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
3 | 1, 2 | islocfin 21540 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐴 ∧ ∀𝑠 ∈ ∪ 𝐽∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
4 | 3 | simp1bi 1138 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∃wrex 3061 {crab 3064 ∩ cin 3720 ∅c0 4061 ∪ cuni 4572 ‘cfv 6031 Fincfn 8108 Topctop 20917 LocFinclocfin 21527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fv 6039 df-top 20918 df-locfin 21530 |
This theorem is referenced by: lfinun 21548 locfinreflem 30241 locfinref 30242 |
Copyright terms: Public domain | W3C validator |