MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincmp Structured version   Visualization version   GIF version

Theorem locfincmp 21377
Description: For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
locfincmp.1 𝑋 = 𝐽
locfincmp.2 𝑌 = 𝐶
Assertion
Ref Expression
locfincmp (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))

Proof of Theorem locfincmp
Dummy variables 𝑜 𝑐 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfincmp.1 . . . . . . . . . 10 𝑋 = 𝐽
21locfinnei 21374 . . . . . . . . 9 ((𝐶 ∈ (LocFin‘𝐽) ∧ 𝑥𝑋) → ∃𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
32ralrimiva 2995 . . . . . . . 8 (𝐶 ∈ (LocFin‘𝐽) → ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
41cmpcov2 21241 . . . . . . . 8 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
53, 4sylan2 490 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
6 elfpw 8309 . . . . . . . . 9 (𝑐 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑐𝐽𝑐 ∈ Fin))
7 simplrr 818 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → 𝑐 ∈ Fin)
8 eldifsn 4350 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐶 ∖ {∅}) ↔ (𝑥𝐶𝑥 ≠ ∅))
9 simplrl 817 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥𝐶)
10 simplrr 818 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑥)
11 simprr 811 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑜)
12 inelcm 4065 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥𝑦𝑜) → (𝑥𝑜) ≠ ∅)
1310, 11, 12syl2anc 694 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → (𝑥𝑜) ≠ ∅)
14 ineq1 3840 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → (𝑠𝑜) = (𝑥𝑜))
1514neeq1d 2882 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑥 → ((𝑠𝑜) ≠ ∅ ↔ (𝑥𝑜) ≠ ∅))
1615elrab 3396 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ↔ (𝑥𝐶 ∧ (𝑥𝑜) ≠ ∅))
179, 13, 16sylanbrc 699 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
18 elunii 4473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
19 locfincmp.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑌 = 𝐶
2018, 19syl6eleqr 2741 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑥𝑥𝐶) → 𝑦𝑌)
2120ancoms 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐶𝑦𝑥) → 𝑦𝑌)
2221adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑌)
231, 19locfinbas 21373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑌)
2524ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑌)
2622, 25eleqtrrd 2733 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑋)
27 simplr 807 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑐)
2826, 27eleqtrd 2732 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦 𝑐)
29 eluni2 4472 . . . . . . . . . . . . . . . . . . 19 (𝑦 𝑐 ↔ ∃𝑜𝑐 𝑦𝑜)
3028, 29sylib 208 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑦𝑜)
3117, 30reximddv 3047 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3231expr 642 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3332exlimdv 1901 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (∃𝑦 𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
34 n0 3964 . . . . . . . . . . . . . . 15 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
35 eliun 4556 . . . . . . . . . . . . . . 15 (𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ↔ ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3633, 34, 353imtr4g 285 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑥 ≠ ∅ → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3736expimpd 628 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → ((𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
388, 37syl5bi 232 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝑥 ∈ (𝐶 ∖ {∅}) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3938ssrdv 3642 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
40 iunfi 8295 . . . . . . . . . . . . 13 ((𝑐 ∈ Fin ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)
4140ex 449 . . . . . . . . . . . 12 (𝑐 ∈ Fin → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
42 ssfi 8221 . . . . . . . . . . . . 13 (( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (𝐶 ∖ {∅}) ∈ Fin)
4342expcom 450 . . . . . . . . . . . 12 ((𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} → ( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4441, 43sylan9 690 . . . . . . . . . . 11 ((𝑐 ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
457, 39, 44syl2anc 694 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4645expimpd 628 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
476, 46sylan2b 491 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ 𝑐 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
4847rexlimdva 3060 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
495, 48mpd 15 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∖ {∅}) ∈ Fin)
50 snfi 8079 . . . . . 6 {∅} ∈ Fin
51 unfi 8268 . . . . . 6 (((𝐶 ∖ {∅}) ∈ Fin ∧ {∅} ∈ Fin) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
5249, 50, 51sylancl 695 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
53 ssun1 3809 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {∅})
54 undif1 4076 . . . . . 6 ((𝐶 ∖ {∅}) ∪ {∅}) = (𝐶 ∪ {∅})
5553, 54sseqtr4i 3671 . . . . 5 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})
56 ssfi 8221 . . . . 5 ((((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin ∧ 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})) → 𝐶 ∈ Fin)
5752, 55, 56sylancl 695 . . . 4 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝐶 ∈ Fin)
5857, 24jca 553 . . 3 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))
5958ex 449 . 2 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
60 cmptop 21246 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
611, 19finlocfin 21371 . . . 4 ((𝐽 ∈ Top ∧ 𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽))
62613expib 1287 . . 3 (𝐽 ∈ Top → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6360, 62syl 17 . 2 (𝐽 ∈ Comp → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6459, 63impbid 202 1 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cuni 4468   ciun 4552  cfv 5926  Fincfn 7997  Topctop 20746  Compccmp 21237  LocFinclocfin 21355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-top 20747  df-cmp 21238  df-locfin 21358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator