Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1res Structured version   Visualization version   GIF version

Theorem lo1res 14485
 Description: The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
lo1res (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))

Proof of Theorem lo1res
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1f 14444 . . . 4 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
2 lo1bdd 14446 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:dom 𝐹⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
31, 2mpdan 705 . . 3 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
4 inss1 3972 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
5 ssralv 3803 . . . . . . 7 ((dom 𝐹𝐴) ⊆ dom 𝐹 → (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
64, 5ax-mp 5 . . . . . 6 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
7 inss2 3973 . . . . . . . . . . 11 (dom 𝐹𝐴) ⊆ 𝐴
87sseli 3736 . . . . . . . . . 10 (𝑦 ∈ (dom 𝐹𝐴) → 𝑦𝐴)
9 fvres 6364 . . . . . . . . . 10 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
108, 9syl 17 . . . . . . . . 9 (𝑦 ∈ (dom 𝐹𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
1110breq1d 4810 . . . . . . . 8 (𝑦 ∈ (dom 𝐹𝐴) → (((𝐹𝐴)‘𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
1211imbi2d 329 . . . . . . 7 (𝑦 ∈ (dom 𝐹𝐴) → ((𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
1312ralbiia 3113 . . . . . 6 (∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
146, 13sylibr 224 . . . . 5 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1514reximi 3145 . . . 4 (∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1615reximi 3145 . . 3 (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
173, 16syl 17 . 2 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
18 fssres 6227 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
191, 4, 18sylancl 697 . . . 4 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
20 resres 5563 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
21 ffn 6202 . . . . . . . 8 (𝐹:dom 𝐹⟶ℝ → 𝐹 Fn dom 𝐹)
22 fnresdm 6157 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
231, 21, 223syl 18 . . . . . . 7 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ dom 𝐹) = 𝐹)
2423reseq1d 5546 . . . . . 6 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
2520, 24syl5eqr 2804 . . . . 5 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
2625feq1d 6187 . . . 4 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ ↔ (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ))
2719, 26mpbid 222 . . 3 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
28 lo1dm 14445 . . . 4 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
294, 28syl5ss 3751 . . 3 (𝐹 ∈ ≤𝑂(1) → (dom 𝐹𝐴) ⊆ ℝ)
30 ello12 14442 . . 3 (((𝐹𝐴):(dom 𝐹𝐴)⟶ℝ ∧ (dom 𝐹𝐴) ⊆ ℝ) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
3127, 29, 30syl2anc 696 . 2 (𝐹 ∈ ≤𝑂(1) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
3217, 31mpbird 247 1 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1628   ∈ wcel 2135  ∀wral 3046  ∃wrex 3047   ∩ cin 3710   ⊆ wss 3711   class class class wbr 4800  dom cdm 5262   ↾ cres 5264   Fn wfn 6040  ⟶wf 6041  ‘cfv 6045  ℝcr 10123   ≤ cle 10263  ≤𝑂(1)clo1 14413 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-pre-lttri 10198  ax-pre-lttrn 10199 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-po 5183  df-so 5184  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-er 7907  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-ico 12370  df-lo1 14417 This theorem is referenced by:  o1res  14486  lo1res2  14488  lo1resb  14490
 Copyright terms: Public domain W3C validator